
Document Number: MD00087
Revision 2.62

January 2, 2009

MIPS Technologies, Inc.
1225 Charleston Road

Mountain View, CA 94043-1353

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

MIPS
Verified™

MIPS64® Architecture For Programmers
Volume II: The MIPS64® Instruction Set

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Template: nB1.03, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS64

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies
logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf,
24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2,
SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other
countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 3

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Contents

Chapter 1: About This Book .. 13
1.1: Typographical Conventions ... 13

1.1.1: Italic Text.. 13
1.1.2: Bold Text .. 13
1.1.3: Courier Text ... 14

1.2: UNPREDICTABLE and UNDEFINED ... 14
1.2.1: UNPREDICTABLE... 14
1.2.2: UNDEFINED .. 14
1.2.3: UNSTABLE .. 15

1.3: Special Symbols in Pseudocode Notation... 15
1.4: For More Information ... 17

Chapter 2: Guide to the Instruction Set .. 19
2.1: Understanding the Instruction Fields ... 19

2.1.1: Instruction Fields .. 21
2.1.2: Instruction Descriptive Name and Mnemonic... 21
2.1.3: Format Field ... 21
2.1.4: Purpose Field ... 22
2.1.5: Description Field .. 22
2.1.6: Restrictions Field.. 22
2.1.7: Operation Field... 23
2.1.8: Exceptions Field... 23
2.1.9: Programming Notes and Implementation Notes Fields.. 24

2.2: Operation Section Notation and Functions.. 24
2.2.1: Instruction Execution Ordering... 24
2.2.2: Pseudocode Functions... 24

2.3: Op and Function Subfield Notation.. 34
2.4: FPU Instructions .. 34

Chapter 3: The MIPS64® Instruction Set .. 35
3.1: Compliance and Subsetting... 35
3.2: Alphabetical List of Instructions ... 36

ABS.fmt ... 48
ADD... 49
ADD.fmt... 50
ADDI.. 51
ADDIU ... 52
ADDU .. 53
ALNV.PS ... 54
AND... 56
ANDI.. 57
B .. 58
BAL.. 59
BC1F ... 60
BC1FL ... 62
BC1T ... 64
BC1TL ... 66

4 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

BC2F ... 68
BC2FL ... 69
BC2T ... 70
BC2TL ... 71
BEQ... 72
BEQL... 73
BGEZ... 74
BGEZAL .. 75
BGEZALL .. 76
BGEZL... 78
BGTZ... 79
BGTZL... 80
BLEZ ... 81
BLEZL ... 82
BLTZ.. 83
BLTZAL ... 84
BLTZALL ... 85
BLTZL.. 87
BNE... 88
BNEL... 89
BREAK .. 90
C.cond.fmt ... 91
CACHE.. 95
CEIL.L.fmt ... 101
CEIL.W.fmt .. 102
CFC1... 103
CFC2... 104
CLO... 105
COP2... 106
CLZ.. 107
CTC1... 108
CTC2... 110
CVT.D.fmt.. 111
CVT.L.fmt .. 112
CVT.PS.S .. 113
CVT.S.fmt.. 114
CVT.S.PL .. 115
CVT.S.PU.. 116
CVT.W.fmt... 117
DADD .. 118
DADDI ... 119
DADDIU... 120
DADDU.. 121
DCLO .. 122
DCLZ... 123
DDIV.. 124
DDIVU ... 125
DERET .. 126
DEXT... 127
DEXTM.. 129
DEXTU .. 131
DI... 133
DINS.. 134

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 5

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

DINSM... 136
DINSU ... 138
DIV .. 140
DIV.fmt .. 142
DIVU.. 143
DMFC0.. 144
DMFC1.. 145
DMFC2.. 146
DMTC0.. 147
DMTC1.. 148
DMTC2.. 149
DMULT.. 150
DMULTU ... 151
DROTR.. 152
DROTR32.. 153
DROTRV ... 154
DSBH .. 155
DSHD .. 156
DSLL ... 157
DSLL32 ... 158
DSLLV... 159
DSRA .. 160
DSRA32 .. 161
DSRAV.. 162
DSRL... 163
DSRL32... 164
DSRLV .. 165
DSUB .. 166
DSUBU.. 167
EHB... 168
EI ... 169
ERET... 170
EXT ... 171
FLOOR.L.fmt ... 173
FLOOR.W.fmt.. 174
INS .. 175
J... 177
JAL .. 178
JALR.. 179
JALR.HB.. 181
JR.. 183
JR.HB.. 184
LB.. 186
LBU ... 187
LD.. 188
LDC1 ... 189
LDC2 ... 190
LDL.. 191
LDR ... 193
LDXC1... 195
LH.. 196
LHU ... 197
LL .. 198

6 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

LLD.. 200
LUI... 201
LUXC1... 202
LW... 203
LWC1 .. 204
LWC2 .. 205
LWL... 206
LWR .. 208
LWU .. 211
LWXC1.. 212
MADD.. 213
MADD.fmt.. 214
MADDU ... 215
MFC0... 216
MFC1... 217
MFC2... 218
MFHC1.. 219
MFHC2.. 220
MFHI.. 221
MFLO .. 222
MOV.fmt .. 223
MOVF.. 224
MOVF.fmt .. 225
MOVN.. 227
MOVN.fmt.. 228
MOVT.. 229
MOVT.fmt .. 230
MOVZ.. 232
MOVZ.fmt .. 233
MSUB.. 234
MSUB.fmt .. 235
MSUBU ... 236
MTC0... 237
MTC1... 238
MTC2... 239
MTHC1.. 240
MTHC2.. 241
MTHI.. 242
MTLO .. 243
MUL... 244
MUL.fmt... 245
MULT... 246
MULTU.. 247
NEG.fmt... 248
NMADD.fmt ... 249
NMSUB.fmt ... 250
NOP... 251
NOR .. 252
OR... 253
ORI .. 254
PAUSE .. 255
PLL.PS .. 257
PLU.PS.. 258

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 7

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

PREF... 259
PREFX .. 262
PUL.PS.. 263
PUU.PS... 264
RDHWR... 265
RDPGPR... 267
RECIP.fmt ... 268
ROTR .. 269
ROTRV.. 270
ROUND.L.fmt .. 271
ROUND.W.fmt... 272
RSQRT.fmt.. 273
SB.. 274
SC ... 275
SCD... 278
SD ... 280
SDBBP .. 281
SDC1... 282
SDC2... 283
SDL ... 284
SDR... 286
SDXC1 .. 288
SEB ... 289
SEH... 290
SH ... 292
SLL .. 293
SLLV.. 294
SLT.. 295
SLTI... 296
SLTIU .. 297
SLTU ... 298
SQRT.fmt .. 299
SRA... 300
SRAV... 301
SRL ... 302
SRLV... 303
SSNOP.. 304
SUB... 305
SUB.fmt ... 306
SUBU .. 307
SUXC1 .. 308
SW... 309
SWC1.. 310
SWC2.. 311
SWL... 312
SWR.. 314
SWXC1.. 316
SYNC .. 317
SYNCI ... 322
SYSCALL .. 324
TEQ... 325
TEQI .. 326
TGE... 327

8 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

TGEI .. 328
TGEIU ... 329
TGEU .. 330
TLBP ... 331
TLBR ... 332
TLBWI ... 334
TLBWR.. 336
TLT .. 338
TLTI ... 339
TLTIU .. 340
TLTU ... 341
TNE ... 342
TNEI .. 343
TRUNC.L.fmt... 344
TRUNC.W.fmt ... 345
WAIT ... 346
WRPGPR .. 347
WSBH.. 348
XOR... 349
XORI.. 350

Appendix A: Instruction Bit Encodings.. 351
A.1: Instruction Encodings and Instruction Classes ... 351
A.2: Instruction Bit Encoding Tables... 351
A.3: Floating Point Unit Instruction Format Encodings ... 360

Appendix B: Revision History ... 361

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 9

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figures

Figure 2.1: Example of Instruction Description ... 20
Figure 2.2: Example of Instruction Fields.. 21
Figure 2.3: Example of Instruction Descriptive Name and Mnemonic .. 21
Figure 2.4: Example of Instruction Format .. 21
Figure 2.5: Example of Instruction Purpose.. 22
Figure 2.6: Example of Instruction Description ... 22
Figure 2.7: Example of Instruction Restrictions... 23
Figure 2.8: Example of Instruction Operation.. 23
Figure 2.9: Example of Instruction Exception.. 23
Figure 2.10: Example of Instruction Programming Notes ... 24
Figure 2.11: COP_LW Pseudocode Function... 25
Figure 2.12: COP_LD Pseudocode Function.. 25
Figure 2.13: COP_SW Pseudocode Function... 25
Figure 2.14: COP_SD Pseudocode Function ... 26
Figure 2.15: CoprocessorOperation Pseudocode Function.. 26
Figure 2.16: AddressTranslation Pseudocode Function ... 26
Figure 2.17: LoadMemory Pseudocode Function ... 27
Figure 2.18: StoreMemory Pseudocode Function... 27
Figure 2.19: Prefetch Pseudocode Function... 28
Figure 2.20: SyncOperation Pseudocode Function .. 29
Figure 2.21: ValueFPR Pseudocode Function.. 29
Figure 2.22: StoreFPR Pseudocode Function .. 30
Figure 2.23: CheckFPException Pseudocode Function.. 31
Figure 2.24: FPConditionCode Pseudocode Function.. 31
Figure 2.25: SetFPConditionCode Pseudocode Function .. 31
Figure 2.26: SignalException Pseudocode Function .. 32
Figure 2.27: SignalDebugBreakpointException Pseudocode Function... 32
Figure 2.28: SignalDebugModeBreakpointException Pseudocode Function.. 32
Figure 2.29: NullifyCurrentInstruction PseudoCode Function ... 33
Figure 2.30: JumpDelaySlot Pseudocode Function.. 33
Figure 2.31: NotWordValue Pseudocode Function... 33
Figure 2.32: PolyMult Pseudocode Function .. 33
Figure 3.1: Example of an ALNV.PS Operation.. 54
Figure 3.2: Usage of Address Fields to Select Index and Way... 95
Figure 3.3: Operation of the DEXT Instruction.. 127
Figure 3.4: Operation of the DEXTM Instruction... 129
Figure 3.5: Operation of the DEXTU Instruction ... 131
Figure 3.6: Operation of the DINS Instruction... 134
Figure 3.7: Operation of the DINSM Instruction.. 136
Figure 3.8: Operation of the DINSU Instruction .. 138
Figure 3.9: Operation of the EXT Instruction .. 171
Figure 3.10: Operation of the INS Instruction ... 175
Figure 3.11: Unaligned Doubleword Load Using LDL and LDR.. 191
Figure 3.12: Bytes Loaded by LDL Instruction.. 192
Figure 3.13: Unaligned Doubleword Load Using LDR and LDL.. 193
Figure 3.14: Bytes Loaded by LDR Instruction ... 194
Figure 3.15: Unaligned Word Load Using LWL and LWR... 206

10 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.16: Bytes Loaded by LWL Instruction ... 207
Figure 3.17: Unaligned Word Load Using LWL and LWR... 208
Figure 3.18: Bytes Loaded by LWR Instruction... 209
Figure 3.19: Unaligned Doubleword Store With SDL and SDR .. 284
Figure 3.20: Bytes Stored by an SDL Instruction.. 285
Figure 3.21: Unaligned Doubleword Store With SDR and SDL .. 286
Figure 3.22: Bytes Stored by an SDR Instruction ... 287
Figure 3.23: Unaligned Word Store Using SWL and SWR ... 312
Figure 3.24: Bytes Stored by an SWL Instruction ... 313
Figure 3.25: Unaligned Word Store Using SWR and SWL ... 314
Figure 3.26: Bytes Stored by SWR Instruction.. 315
Figure A.1: Sample Bit Encoding Table .. 352

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 11

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 15
Table 2.1: AccessLength Specifications for Loads/Stores.. 28
Table 3.1: CPU Arithmetic Instructions ... 36
Table 3.2: CPU Branch and Jump Instructions... 37
Table 3.3: CPU Instruction Control Instructions.. 38
Table 3.4: CPU Load, Store, and Memory Control Instructions .. 38
Table 3.5: CPU Logical Instructions.. 39
Table 3.6: CPU Insert/Extract Instructions.. 39
Table 3.7: CPU Move Instructions .. 40
Table 3.8: CPU Shift Instructions.. 40
Table 3.9: CPU Trap Instructions.. 41
Table 3.10: Obsolete CPU Branch Instructions .. 42
Table 3.11: FPU Arithmetic Instructions.. 42
Table 3.12: FPU Branch Instructions .. 43
Table 3.13: FPU Compare Instructions... 43
Table 3.14: FPU Convert Instructions... 43
Table 3.15: FPU Load, Store, and Memory Control Instructions .. 44
Table 3.16: FPU Move Instructions... 44
Table 3.17: Obsolete FPU Branch Instructions... 45
Table 3.18: Coprocessor Branch Instructions... 45
Table 3.19: Coprocessor Execute Instructions ... 45
Table 3.20: Coprocessor Load and Store Instructions.. 45
Table 3.21: Coprocessor Move Instructions.. 45
Table 3.22: Obsolete Coprocessor Branch Instructions.. 46
Table 3.23: Privileged Instructions.. 46
Table 3.24: EJTAG Instructions .. 47
Table 3.25: FPU Comparisons Without Special Operand Exceptions .. 92
Table 3.26: FPU Comparisons With Special Operand Exceptions for QNaNs ... 93
Table 3.27: Usage of Effective Address.. 95
Table 3.28: Encoding of Bits[17:16] of CACHE Instruction... 96
Table 3.29: Encoding of Bits [20:18] of the CACHE Instruction.. 97
Table 3.30: Values of hint Field for PREF Instruction ... 259
Table 3.31: RDHWR Register Numbers ... 265
Table 3.32: Encodings of the Bits[10:6] of the SYNC instruction; the SType Field... 319
Table A.1: Symbols Used in the Instruction Encoding Tables .. 352
Table A.2: MIPS64 Encoding of the Opcode Field ... 353
Table A.3: MIPS64 SPECIAL Opcode Encoding of Function Field... 354
Table A.4: MIPS64 REGIMM Encoding of rt Field .. 354
Table A.5: MIPS64 SPECIAL2 Encoding of Function Field .. 354
Table A.6: MIPS64 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture.............................. 355
Table A.7: MIPS64 MOVCI Encoding of tf Bit ... 355
Table A.8: MIPS64 SRL Encoding of Shift/Rotate .. 355
Table A.9: MIPS64 SRLV Encoding of Shift/Rotate.. 355
Table A.10: MIPS64 DSRLV Encoding of Shift/Rotate ... 356
Table A.11: MIPS64 DSRL Encoding of Shift/Rotate.. 356
Table A.12: MIPS64 DSRL32 Encoding of Shift/Rotate.. 356
Table A.13: MIPS64 BSHFL and DBSHFL Encoding of sa Field.. 356

12 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table A.14: MIPS64 COP0 Encoding of rs Field .. 357
Table A.15: MIPS64 COP0 Encoding of Function Field When rs=CO.. 357
Table A.16: MIPS64 COP1 Encoding of rs Field .. 357
Table A.17: MIPS64 COP1 Encoding of Function Field When rs=S... 358
Table A.18: MIPS64 COP1 Encoding of Function Field When rs=D .. 358
Table A.19: MIPS64 COP1 Encoding of Function Field When rs=W or L .. 358
Table A.20: MIPS64 COP1 Encoding of Function Field When rs=PS .. 359
Table A.21: MIPS64 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF...................................... 359
Table A.22: MIPS64 COP2 Encoding of rs Field .. 359
Table A.23: MIPS64 COP1X Encoding of Function Field ... 359
Table A.24: Floating Point Unit Instruction Format Encodings.. 360

Chapter 1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 13

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

About This Book

The MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set comes as a multi-volume set.

• Volume I describes conventions used throughout the document set, and provides an introduction to the MIPS64®
Architecture

• Volume II provides detailed descriptions of each instruction in the MIPS64® instruction set

• Volume III describes the MIPS64® Privileged Resource Architecture which defines and governs the behavior of
the privileged resources included in a MIPS64® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS64® document set

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

 About This Book

14 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.3 Special Symbols in Pseudocode Notation

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 15

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

 About This Book

16 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian-
ness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this endi-
anness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be computed
as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for dif-
ferent instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.4 For More Information

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 17

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS64® Architecture or this document, send Email to support@mips.com.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 64-bit address all of which are significant during a memory refer-
ence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension, the ISA Mode is a single-bit reg-
ister that determines in which mode the processor is executing, as follows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

SEGBITS The number of virtual address bits implemented in a segment of the address space is represented by the sym-
bol SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is

2SEGBITS = 240 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32, the FPU has 32
32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, the FPU has 32
64-bit FPRs in which 64-bit data types are stored in any FPR.

In MIPS32 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a compati-
bility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a
case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the processor
operates as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e instructions

http://www.mips.com/
mailto:architecture@mips.com

 About This Book

18 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Chapter 2

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 19

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 21

• “Instruction Descriptive Name and Mnemonic” on page 21

• “Format Field” on page 21

• “Purpose Field” on page 22

• “Description Field” on page 22

• “Restrictions Field” on page 22

• “Operation Field” on page 23

• “Exceptions Field” on page 23

• “Programming Notes and Implementation Notes Fields” on page 24

 Guide to the Instruction Set

20 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 2.1 Example of Instruction Description

EXAMPLE
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0 rt rd
0

00000
EXAMPLE

000000

6 5 5 5 5 6

Format: EXAMPLE fd,rs,rt MIPS32

Purpose: Example Instruction Name

To execute an EXAMPLE op.

Description: GPR[rd] ← GPR[r]s exampleop GPR[rt]

This section describes the operation of the instruction in text, tables, and illustrations. It
includes information that would be difficult to encode in the Operation section.

Restrictions:

This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

Operation:

/* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← sign_extend(temp31..0)

Exceptions:

A list of exceptions taken by the instruction

Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Implementation Notes:

Like Programming Notes, except for processor implementors

Example Instruction Name EXAMPLEInstruction Mnemonic and
Descriptive Name

Instruction encoding
constant and variable field
names and values

Architecture level at which
instruction was defined/redefined

Assembler format(s) for each
definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on instruction
and operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors

2.1 Understanding the Instruction Fields

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 21

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADD

100000

6 5 5 5 5 6

Add Word ADD

Format: ADD fd,rs,rt MIPS32

 Guide to the Instruction Set

22 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control
/Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is signed-extended and placed into
GPR rd.

2.1 Understanding the Instruction Fields

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 23

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 24 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal),
then the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp31..0)
endif

Exceptions:

Integer Overflow

 Guide to the Instruction Set

24 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 24

• “Pseudocode Functions” on page 24

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

• “Coprocessor General Register Access Functions” on page 24

• “Memory Operation Functions” on page 26

• “Floating Point Functions” on page 29

• “Miscellaneous Functions” on page 32

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into
the functions described in this section.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 25

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

 Guide to the Instruction Set

26 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 2.14 COP_SD Pseudocode Function

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/

2.2 Operation Section Notation and Functions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 27

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

 Guide to the Instruction Set

28 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

2.2 Operation Section Notation and Functions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 29

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← UNPREDICTABLE32 || FPR[fpr]31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr+1]31..0 || FPR[fpr]31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE

 Guide to the Instruction Set

30 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

else
valueFPR ← FPR[fpr]

endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← UNPREDICTABLE32 || value31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value31..0
FPR[fpr+1] ← UNPREDICTABLE32 || value63..32

endif
else

FPR[fpr] ← value
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase

2.2 Operation Section Notation and Functions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 31

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

CheckFPException

Figure 2.23 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17 = 1) or
((FCSR16..12 and FCSR11..7) ≠ 0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.24 FPConditionCode Pseudocode Function

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

 Guide to the Instruction Set

32 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from
non-Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

2.2 Operation Section Notation and Functions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 33

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 2.29 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immedi-
ately follows a JR, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

Figure 2.31 NotWordValue Pseudocode Function

result ← NotWordValue(value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */

/* value: A 64-bit register value to be checked */

NotWordValue ← value63..32 ≠ (value31)32

endfunction NotWordValue

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.32 PolyMult Pseudocode Function

PolyMult(x, y)
temp ← 0
for i in 0 .. 31

if xi = 1 then
temp ← temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult ← temp

endfunction PolyMult

 Guide to the Instruction Set

34 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 34 for a description of the op and function subfields.

Chapter 3

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 35

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

The MIPS64® Instruction Set

3.1 Compliance and Subsetting

To be compliant with the MIPS64 Architecture, designs must implement a set of required features, as described in
this document set. To allow flexibility in implementations, the MIPS64 Architecture does provide subsetting rules.
An implementation that follows these rules is compliant with the MIPS64 Architecture as long as it adheres strictly to
the rules, and fully implements the remaining instructions.Supersetting of the MIPS64 Architecture is only allowed
by adding functions to the SPECIAL2 major opcode, by adding control for co-processors via the COP2, LWC2,
SWC2, LDC2, and/or SDC2, or via the addition of approved Application Specific Extensions.

Note: The use of COP3 as a customizable coprocessor has been removed in the Release 2 of the MIPS64 architecture.
The use of the COP3 is now reserved for the future extension of the architecture.

The instruction set subsetting rules are as follows:

• All CPU instructions must be implemented - no subsetting is allowed.

• The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determine if an FPU is implemented by checking the state of the FP bit in the Config1 CP0 regis-
ter. If the FPU is implemented, the paired single (PS) format is optional. Software may determine which FPU
data types are implemented by checking the appropriate bit in the FIR CP1 register. The following allowable
FPU subsets are compliant with the MIPS64 architecture:

• No FPU

• FPU with S, D, W, and L formats and all supporting instructions

• FPU with S, D, PS, W, and L formats and all supporting instructions

• Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 is implemented by
checking the state of the C2 bit in the Config1 CP0 register. If Coprocessor 2 is implemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, DMFC2, DMTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and
SWC2) may be omitted on an instruction-by-instruction basis.

• Implementation of the full 64-bit address space is optional. The processor may implement 64-bit data and opera-
tions with a 32-bit only address space. In this case, the MMU acts as if 64-bit addressing is always disabled. Soft-
ware may determine if the processor implements a 32-bit or 64-bit address space by checking the AT field in the
Config CP0 register.

• Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of the Status register must be ignored
on write and read as zero.

• The standard TLB-based memory management unit may be replaced with a simpler MMU (e.g., a Fixed Map-
ping MMU). If this is done, the rest of the interface to the Privileged Resource Architecture must be preserved. If

 The MIPS64® Instruction Set

36 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

a TLB-based memory management unit is implemented, it must be the standard TLB-based MMU as described
in the Privileged Resource Architecture chapter. Software may determine the type of the MMU by checking the
MT field in the Config CP0 register.

• The Privileged Resource Architecture includes several implementation options and may be subsetted in accor-
dance with those options.

• Instruction, CP0 Register, and CP1 Control Register fields that are marked “Reserved” or shown as “0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

• Supported ASEs are optional and may be subsetted out. If most cases, software may determine if a supported
ASE is implemented by checking the appropriate bit in the Config1 or Config3 CP0 register. If they are imple-
mented, they must implement the entire ISA applicable to the component, or implement subsets that are
approved by the ASE specifications.

• EJTAG is optional and may be subsetted out. If it is implemented, it must implement only those subsets that are
approved by the EJTAG specification.

• If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

3.2 Alphabetical List of Instructions

Table 3.1 through Table 3.24 provide a list of instructions grouped by category. Individual instruction descriptions
follow the tables, arranged in alphabetical order.

Table 3.1 CPU Arithmetic Instructions

Mnemonic Instruction

ADD Add Word

ADDI Add Immediate Word

ADDIU Add Immediate Unsigned Word

ADDU Add Unsigned Word

CLO Count Leading Ones in Word

CLZ Count Leading Zeros in Word

DADD Doubleword Add

DADDI Doubleword Add immediate

DADDIU Doubleword Add Immediate Unsigned

DADDU Doubleword Add Unsigned

DCLO Count Leading Ones in Doubleword

DCLZ Count Leading Zeros in Doubleword

DDIV Doubleword Divide

DDIVU Doubleword Divide Unsigned

3.2 Alphabetical List of Instructions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 37

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

DIV Divide Word

DIVU Divide Unsigned Word

DMULT Doubleword Multiply

DMULTU Doubleword Multiply Unsigned

DSUB Doubleword Subtract

DSUBU Doubleword Subtract Unsigned

MADD Multiply and Add Word to Hi, Lo

MADDU Multiply and Add Unsigned Word to Hi, Lo

MSUB Multiply and Subtract Word to Hi, Lo

MSUBU Multiply and Subtract Unsigned Word to Hi, Lo

MUL Multiply Word to GPR

MULT Multiply Word

MULTU Multiply Unsigned Word

SEB Sign-Extend Byte Release 2 Only

SEH Sign-Extend Halftword Release 2 Only

SLT Set on Less Than

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned

SLTU Set on Less Than Unsigned

SUB Subtract Word

SUBU Subtract Unsigned Word

Table 3.2 CPU Branch and Jump Instructions

Mnemonic Instruction

B Unconditional Branch

BAL Branch and Link

BEQ Branch on Equal

BGEZ Branch on Greater Than or Equal to Zero

BGEZAL Branch on Greater Than or Equal to Zero and Link

BGTZ Branch on Greater Than Zero

BLEZ Branch on Less Than or Equal to Zero

Table 3.1 CPU Arithmetic Instructions (Continued)

Mnemonic Instruction

 The MIPS64® Instruction Set

38 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

BLTZ Branch on Less Than Zero

BLTZAL Branch on Less Than Zero and Link

BNE Branch on Not Equal

J Jump

JAL Jump and Link

JALR Jump and Link Register

JALR.HB Jump and Link Register with Hazard Barrier Release 2 Only

JR Jump Register

JR.HB Jump Register with Hazard Barrier Release 2 Only

Table 3.3 CPU Instruction Control Instructions

Mnemonic Instruction

EHB Execution Hazard Barrier Release 2 Only

NOP No Operation

PAUSE Wait for LLBit to Clear Release 2.1
Only

SSNOP Superscalar No Operation

Table 3.4 CPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LB Load Byte

LBU Load Byte Unsigned

LD Load Doubleword

LDL Load Doubleword LEft

LDR Load Doubleword Right

LH Load Halfword

LHU Load Halfword Unsigned

LL Load Linked Word

LLD Load Linked Doubleword

LW Load Word

LWL Load Word Left

Table 3.2 CPU Branch and Jump Instructions (Continued)

Mnemonic Instruction

3.2 Alphabetical List of Instructions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 39

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

LWR Load Word Right

LWU Load Word Unsigned

PREF Prefetch

SB Store Byte

SC Store Conditional Word

SCD Store Conditional Doubleword

SD Store Doubleword

SDL Store Doubleword LEft

SDR Store Doubleword Right

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

SYNC Synchronize Shared Memory

SYNCI Synchronize Caches to Make Instruction Writes Effective Release 2 Only

Table 3.5 CPU Logical Instructions

Mnemonic Instruction

AND And

ANDI And Immediate

LUI Load Upper Immediate

NOR Not Or

OR Or

ORI Or Immediate

XOR Exclusive Or

XORI Exclusive Or Immediate

Table 3.6 CPU Insert/Extract Instructions

Mnemonic Instruction

DEXT Doubleword Extract Bit Field Release 2 Only

Table 3.4 CPU Load, Store, and Memory Control Instructions (Continued)

Mnemonic Instruction

 The MIPS64® Instruction Set

40 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

DEXTM Doubleword Extract Bit Field Middle Release 2 Only

DEXTU Doubleword Extract Bit Field Upper Release 2 Only

DINS Doubleword Insert Bit Field Release 2 Only

DINSM Doubleword Insert Bit Field Middle Release 2 Only

DINSU Doubleword Insert Bit Field Upper Release 2 Only

DSBH Doubleword Swap Bytes Within Halfwords Release 2 Only

DSHD Doubleword Swap Halfwords Within Doublewords Release 2 Only

EXT Extract Bit Field Release 2 Only

INS Insert Bit Field Release 2 Only

WSBH Word Swap Bytes Within Halfwords Release 2 Only

Table 3.7 CPU Move Instructions

Mnemonic Instruction

MFHI Move From HI Register

MFLO Move From LO Register

MOVF Move Conditional on Floating Point False

MOVN Move Conditional on Not Zero

MOVT Move Conditional on Floating Point True

MOVZ Move Conditional on Zero

MTHI Move To HI Register

MTLO Move To LO Register

RDHWR Read Hardware Register Release 2 Only

Table 3.8 CPU Shift Instructions

Mnemonic Instruction

DROTR Doubleword Rotate Right Release 2 Only

DROTR32 Doubleword Rotate Right Plus 32 Release 2 Only

DROTRV Doubleword Rotate Right Variable Release 2 Only

DSLL Doubleword Shift Left Logical

DSLL32 Doubleword Shift Left Logical Plus 32

Table 3.6 CPU Insert/Extract Instructions (Continued)

Mnemonic Instruction

3.2 Alphabetical List of Instructions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 41

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

DSLLV Doubleword Shift Left Logical Variable

DSRA Doubleword Shift Right Arithmetic

DSRA32 Doubleword Shift Right Arithmetic Plus 32

DSRAV Doubleword Shift Right Arithmetic Variable

DSRL Doubleword Shift Right Logical

DSRL32 Doubleword Shift Right Logical Plus 32

DSRLV Doubleword Shift Right Logical Variable

ROTR Rotate Word Right Release 2 Only

ROTRV Rotate Word Right Variable Release 2 Only

SLL Shift Word Left Logical

SLLV Shift Word Left Logical Variable

SRA Shift Word Right Arithmetic

SRAV Shift Word Right Arithmetic Variable

SRL Shift Word Right Logical

SRLV Shift Word Right Logical Variable

Table 3.9 CPU Trap Instructions

Mnemonic Instruction

BREAK Breakpoint

SYSCALL System Call

TEQ Trap if Equal

TEQI Trap if Equal Immediate

TGE Trap if Greater or Equal

TGEI Trap if Greater of Equal Immediate

TGEIU Trap if Greater or Equal Immediate Unsigned

TGEU Trap if Greater or Equal Unsigned

TLT Trap if Less Than

TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned

TLTU Trap if Less Than Unsigned

TNE Trap if Not Equal

Table 3.8 CPU Shift Instructions (Continued)

Mnemonic Instruction

 The MIPS64® Instruction Set

42 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

TNEI Trap if Not Equal Immediate

Table 3.10 Obsolete1 CPU Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS64 architecture.

Mnemonic Instruction

BEQL Branch on Equal Likely

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

BGEZL Branch on Greater Than or Equal to Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLEZL Branch on Less Than or Equal to Zero Likely

BLTZALL Branch on Less Than Zero and Link Likely

BLTZL Branch on Less Than Zero Likely

BNEL Branch on Not Equal Likely

Table 3.11 FPU Arithmetic Instructions

Mnemonic Instruction

ABS.fmt Floating Point Absolute Value

ADD.fmt Floating Point Add

DIV.fmt Floating Point Divide

MADD.fmt Floating Point Multiply Add

MSUB.fmt Floating Point Multiply Subtract

MUL.fmt Floating Point Multiply

NEG.fmt Floating Point Negate

NMADD.fmt Floating Point Negative Multiply Add

NMSUB.fmt Floating Point Negative Multiply Subtract

RECIP.fmt Reciprocal Approximation

RSQRT.fmt Reciprocal Square Root Approximation

SQRT.fmt Floating Point Square Root

SUB.fmt Floating Point Subtract

Table 3.9 CPU Trap Instructions (Continued)

Mnemonic Instruction

3.2 Alphabetical List of Instructions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 43

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 3.12 FPU Branch Instructions

Mnemonic Instruction

BC1F Branch on FP False

BC1T Branch on FP True

Table 3.13 FPU Compare Instructions

Mnemonic Instruction

C.cond.fmt Floating Point Compare

Table 3.14 FPU Convert Instructions

Mnemonic Instruction

ALNV.PS Floating Point Align Variable 64-bit FPU Only

CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point 64-bit FPU Only

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

CVT.D.fmt Floating Point Convert to Double Floating Point

CVT.L.fmt Floating Point Convert to Long Fixed Point 64-bit FPU Only

CVT.PS.S Floating Point Convert Pair to Paired Single 64-bit FPU Only

CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point 64-bit FPU Only

CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point 64-bit FPU Only

CVT.S.fmt Floating Point Convert to Single Floating Point

CVT.W.fmt Floating Point Convert to Word Fixed Point

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point 64-bit FPU Only

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

PLL.PS Pair Lower Lower 64-bit FPU Only

PLU.PS Pair Lower Upper 64-bit FPU Only

PUL.PS Pair Upper Lower 64-bit FPU Only

PUU.PS Pair Upper Upper 64-bit FPU Only

ROUND.L.fmt Floating Point Round to Long Fixed Point 64-bit FPU Only

ROUND.W.fmt Floating Point Round to Word Fixed Point

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point 64-bit FPU Only

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

 The MIPS64® Instruction Set

44 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 3.15 FPU Load, Store, and Memory Control Instructions

Mnemonic Instruction

LDC1 Load Doubleword to Floating Point

LDXC1 Load Doubleword Indexed to Floating Point 64-bit FPU Only

LUXC1 Load Doubleword Indexed Unaligned to Floating Point 64-bit FPU Only

LWC1 Load Word to Floating Point

LWXC1 Load Word Indexed to Floating Point 64-bit FPU Only

PREFX Prefetch Indexed

SDC1 Store Doubleword from Floating Point

SDXC1 Store Doubleword Indexed from Floating Point 64-bit FPU Only

SUXC1 Store Doubleword Indexed Unaligned from Floating Point 64-bit FPU Only

SWC1 Store Word from Floating Point

SWXC1 Store Word Indexed from Floating Point 64-bit FPU Only

Table 3.16 FPU Move Instructions

Mnemonic Instruction

CFC1 Move Control Word from Floating Point

CTC1 Move Control Word to Floating Point

DMFC1 Doubleword Move from Floating Point

DMTC1 Doubleword Move to Floating Point

MFC1 Move Word from Floating Point

MFHC1 Move Word from High Half of Floating Point Register Release 2 Only

MOV.fmt Floating Point Move

MOVF.fmt Floating Point Move Conditional on Floating Point False

MOVN.fmt Floating Point Move Conditional on Not Zero

MOVT.fmt Floating Point Move Conditional on Floating Point True

MOVZ.fmt Floating Point Move Conditional on Zero

MTC1 Move Word to Floating Point

MTHC1 Move Word to High Half of Floating Point Register Release 2 Only

3.2 Alphabetical List of Instructions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 45

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 3.17 Obsolete1 FPU Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS64 architecture.

Mnemonic Instruction

BC1FL Branch on FP False Likely

BC1TL Branch on FP True Likely

Table 3.18 Coprocessor Branch Instructions

Mnemonic Instruction

BC2F Branch on COP2 False

BC2T Branch on COP2 True

Table 3.19 Coprocessor Execute Instructions

Mnemonic Instruction

COP2 Coprocessor Operation to Coprocessor 2

Table 3.20 Coprocessor Load and Store Instructions

Mnemonic Instruction

LDC2 Load Doubleword to Coprocessor 2

LWC2 Load Word to Coprocessor 2

SDC2 Store Doubleword from Coprocessor 2

SWC2 Store Word from Coprocessor 2

Table 3.21 Coprocessor Move Instructions

Mnemonic Instruction

CFC2 Move Control Word from Coprocessor 2

CTC2 Move Control Word to Coprocessor 2

DMFC2 Doubleword Move from Coprocessor 2

DMTC2 Doubleword Move to Coprocessor 2

MFC2 Move Word from Coprocessor 2

 The MIPS64® Instruction Set

46 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

MFHC2 Move Word from High Half of Coprocessor 2 Register Release 2 Only

MTC2 Move Word to Coprocessor 2

MTHC2 Move Word to High Half of Coprocessor 2 Register Release 2 Only

Table 3.22 Obsolete1 Coprocessor Branch Instructions

1. Software is strongly encouraged to avoid use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS64 architecture.

Mnemonic Instruction

BC2FL Branch on COP2 False Likely

BC2TL Branch on COP2 True Likely

Table 3.23 Privileged Instructions

Mnemonic Instruction

CACHE Perform Cache Operation

DI Disable Interrupts Release 2 Only

DMFC0 Doubleword Move from Coprocessor 0

DMTC0 Doubleword Move to Coprocessor 0

EI Enable Interrupts Release 2 Only

ERET Exception Return

MFC0 Move from Coprocessor 0

MTC0 Move to Coprocessor 0

RDPGPR Read GPR from Previous Shadow Set Release 2 Only

TLBP Probe TLB for Matching Entry

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

WAIT Enter Standby Mode

WRPGPR Write GPR to Previous Shadow Set Release 2 Only

Table 3.21 Coprocessor Move Instructions (Continued)

Mnemonic Instruction

3.2 Alphabetical List of Instructions

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 47

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 3.24 EJTAG Instructions

Mnemonic Instruction

DERET Debug Exception Return

SDBBP Software Debug Breakpoint

Floating Point Absolute Value ABS.fmt

48 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ABS.fmt
ABS.S fd, fs MIPS32
ABS.D fd, fs MIPS32
ABS.PS fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Absolute Value

Description: FPR[fd] ← abs(FPR[fs])

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are values in format fmt.
ABS.PS takes the absolute value of the two values in FPR fs independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bits if no exception is taken.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of ABS.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

ABS
000101

6 5 5 5 5 6

Add Word IADD

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 49

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ADD rd, rs, rt MIPS32

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is signed-extended and placed into GPR rd.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADD

100000

6 5 5 5 5 6

Floating Point Add ADD.fmt

50 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ADD.fmt
ADD.S fd, fs, ft MIPS32
ADD.D fd, fs, ft MIPS32
ADD.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Add

To add floating point values

Description: FPR[fd] ← FPR[fs] + FPR[ft]

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
ADD.PS adds the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated excep-
tions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of ADD.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd
ADD

000000

6 5 5 5 5 6

Add Immediate Word IADDI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 51

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ADDI rt, rs, immediate MIPS32

Purpose: Add Immediate Word

To add a constant to a 32-bit integer. If overflow occurs, then trap.

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is sign-extended and placed into GPR rt.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← (GPR[rs]31||GPR[rs]31..0) + sign_extend(immediate)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← sign_extend(temp31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

ADDI
001000

rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU

52 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ADDIU rt, rs, immediate MIPS32

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-extended
and placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

ADDIU
001001

rs rt immediate

6 5 5 16

Add Unsigned Word IADDU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 53

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ADDU rd, rs, rt MIPS32

Purpose: Add Unsigned Word

To add 32-bit integers

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← GPR[rs] + GPR[rt]
GPR[rd] ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADDU
100001

6 5 5 5 5 6

Floating Point Align Variable ALNV.PS

54 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ALNV.PS fd, fs, ft, rs MIPS64, MIPS32 Release 2

Purpose: Floating Point Align Variable

To align a misaligned pair of paired single values

Description: FPR[fd] ← ByteAlign(GPR[rs]2..0, FPR[fs], FPR[ft])

FPR fs is concatenated with FPR ft and this value is funnel-shifted by GPR rs2..0 bytes, and written into FPR fd. If
GPR rs2..0 is 0, FPR fd receives FPR fs. If GPR rs2..0 is 4, the operation depends on the current endianness.

Figure 3-1 illustrates the following example: for a big-endian operation and a byte alignment of 4, the upper half of
FPR fd receives the lower half of the paired single value in fs, and the lower half of FPR fd receives the upper half of
the paired single value in FPR ft.

Figure 3.1 Example of an ALNV.PS Operation

The move is nonarithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

If GPR rs1..0 are non-zero, the results are UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rs]2..0 = 0 then
StoreFPR(fd, PS,ValueFPR(fs,PS))

else if GPR[rs]2..0 ≠ 4 then
UNPREDICTABLE

else if BigEndianCPU then
StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft,PS)63..32)

else
StoreFPR(fd, PS, ValueFPR(ft, PS)31..0 || ValueFPR(fs,PS)63..32)

endif

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

rs ft fs fd
ALNV.PS

011110

6 5 5 5 5 6

63 3132 0

63 3132 0

63 3132 0

FPR[ft]FPR[fs]

63

63

63 3132

3132

3132 0

0

0

FPR[ft]FPR[fs]

FPR[fd]

Floating Point Align Variable IALNV.PS

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 55

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

ALNV.PS is designed to be used with LUXC1 to load 8 bytes of data from any 4-byte boundary. For example:

/* Copy T2 bytes (a multiple of 16) of data T0 to T1, T0 unaligned, T1 aligned.
Reads one dw beyond the end of T0. */

LUXC1 F0, 0(T0) /* set up by reading 1st src dw */
LI T3, 0 /* index into src and dst arrays */
ADDIU T4, T0, 8 /* base for odd dw loads */
ADDIU T5, T1, -8/* base for odd dw stores */

LOOP:
LUXC1 F1, T3(T4)
ALNV.PS F2, F0, F1, T0/* switch F0, F1 for little-endian */
SDC1 F2, T3(T1)
ADDIU T3, T3, 16
LUXC1 F0, T3(T0)
ALNV.PS F2, F1, F0, T0/* switch F1, F0 for little-endian */
BNE T3, T2, LOOP
SDC1 F2, T3(T5)

DONE:

ALNV.PS is also useful with SUXC1 to store paired-single results in a vector loop to a possibly misaligned address:

/* T1[i] = T0[i] + F8, T0 aligned, T1 unaligned. */
CVT.PS.S F8, F8, F8/* make addend paired-single */

/* Loop header computes 1st pair into F0, stores high half if T1 */
/* misaligned */

LOOP:
LDC1 F2, T3(T4)/* get T0[i+2]/T0[i+3] */
ADD.PS F1, F2, F8/* compute T1[i+2]/T1[i+3] */
ALNV.PS F3, F0, F1, T1/* align to dst memory */
SUXC1 F3, T3(T1)/* store to T1[i+0]/T1[i+1] */
ADDIU T3, 16 /* i = i + 4 */
LDC1 F2, T3(T0)/* get T0[i+0]/T0[i+1] */
ADD.PS F0, F2, F8/* compute T1[i+0]/T1[i+1] */
ALNV.PS F3, F1, F0, T1/* align to dst memory */
BNE T3, T2, LOOP
SUXC1 F3, T3(T5)/* store to T1[i+2]/T1[i+3] */

/* Loop trailer stores all or half of F0, depending on T1 alignment */

And AND

56 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: AND rd, rs, rt MIPS32

Purpose: And

To do a bitwise logical AND

Description: GPR[rd] ← GPR[rs] AND GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
AND

100100

6 5 5 5 5 6

And Immediate IANDI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 57

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ANDI rt, rs, immediate MIPS32

Purpose: And Immediate

To do a bitwise logical AND with a constant

Description: GPR[rt] ← GPR[rs] AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical AND
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ANDI
001100

rs rt immediate

6 5 5 16

Unconditional Branch B

58 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: B offset Assembly Idiom

Purpose: Unconditional Branch

To do an unconditional branch

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BEQ r0, r0, offset.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BEQ
000100

0
00000

0
00000

offset

6 5 5 16

Branch and Link IBAL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 59

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BAL offset Assembly Idiom

Purpose: Branch and Link

To do an unconditional PC-relative procedure call

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction is interpreted by the
hardware as BGEZAL r0, offset.

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
re-executed. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 02)
GPR[31] ← PC + 8

I+1: PC ← PC + target_offset

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM
000001

0
00000

BGEZAL
10001

offset

6 5 5 16

Branch on FP False BC1F

60 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC1F offset (cc = 0 implied) MIPS32
BC1F cc, offset MIPS32

Purpose: Branch on FP False

To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc is false (0), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architectures there must be at least one instruction between the compare instruction that sets

31 26 25 21 20 18 17 16 15 0

COP1
010001

BC
01000

cc
nd
0

tf
0

offset

6 5 3 1 1 16

Branch on FP False IBC1F

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 61

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on FP False Likely BC1FL

62 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC1FL offset (cc = 0 implied) MIPS32
BC1FL cc, offset MIPS32

Purpose: Branch on FP False Likely

To test an FP condition code and make a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if FPConditionCode(cc) = 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code bit cc is false (0), the program branches to the effective target address after the instruction in the delay
slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is

31 26 25 21 20 18 17 16 15 0

COP1
010001

BC
01000

cc
nd
1

tf
0

offset

6 5 3 1 1 16

Branch on FP False Likely IBC1FL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 63

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

encouraged to use the BC1F instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrs there must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on FP True BC1T

64 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC1T offset (cc = 0 implied) MIPS32
BC1T cc, offset MIPS32

Purpose: Branch on FP True

To test an FP condition code and do a PC-relative conditional branch

Description: if FPConditionCode(cc) = 1 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP con-
dition code bit cc is true (1), the program branches to the effective target address after the instruction in the delay slot
is executed. An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS I, II, and III architectures there must be at least one instruction between the compare instruction that sets

31 26 25 21 20 18 17 16 15 0

COP1
010001

BC
01000

cc
nd
0

tf
1

offset

6 5 3 1 1 16

Branch on FP True IBC1T

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 65

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

the condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on FP True Likely BC1TL

66 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC1TL offset (cc = 0 implied) MIPS32
BC1TL cc, offset MIPS32

Purpose: Branch on FP True Likely

To test an FP condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only if
the branch is taken.

Description: if FPConditionCode(cc) = 1 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the FP Con-
dition Code bit cc is true (1), the program branches to the effective target address after the instruction in the delay slot
is executed. If the branch is not taken, the instruction in the delay slot is not executed.

An FP condition code is set by the FP compare instruction, C.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC1F, BC1FL, BC1T, and BC1TL have specific values for
tf and nd.

I: condition ← FPConditionCode(cc) = 1
target_offset ← (offset15)GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch

31 26 25 21 20 18 17 16 15 0

COP1
010001

BC
01000

cc
nd
1

tf
1

offset

6 5 3 1 1 16

Branch on FP True Likely IBC1TL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 67

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC1T instruction instead.

Historical Information:

The MIPS I architecture defines a single floating point condition code, implemented as the coprocessor 1 condition
signal (Cp1Cond) and the C bit in the FP Control/Status register. MIPS I, II, and III architectures must have the CC
field set to 0, which is implied by the first format in the “Format” section.

The MIPS IV and MIPS32 architectures add seven more Condition Code bits to the original condition code 0. FP
compare and conditional branch instructions specify the Condition Code bit to set or test. Both assembler formats are
valid for MIPS IV and MIPS32.

In the MIPS II andIII architectionrs there must be at least one instruction between the compare instruction that
sets a condition code and the branch instruction that tests it. Hardware does not detect a violation of this restriction.

Branch on COP2 False BC2F

68 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC2F offset (cc = 0 implied) MIPS32
BC2F cc, offset MIPS32

Purpose: Branch on COP2 False

To test a COP2 condition code and do a PC-relative conditional branch

Description: if COP2Condition(cc) = 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2
010010

BC
01000

cc
nd
0

tf
0

offset

6 5 3 1 1 16

Branch on COP2 False Likely IBC2FL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 69

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC2FL offset (cc = 0 implied) MIPS32
BC2FL cc, offset MIPS32

Purpose: Branch on COP2 False Likely

To test a COP2 condition code and make a PC-relative conditional branch; execute the instruction in the delay slot
only if the branch is taken.

Description: if COP2Condition(cc) = 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is false (0), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 0
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2F instruction instead.

31 26 25 21 20 18 17 16 15 0

COP2
010010

BC
01000

cc
nd
1

tf
0

offset

6 5 3 1 1 16

Branch on COP2 True BC2T

70 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC2T offset (cc = 0 implied) MIPS32
BC2T cc, offset MIPS32

Purpose: Branch on COP2 True

To test a COP2 condition code and do a PC-relative conditional branch

Description: if COP2Condition(cc) = 1 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 18 17 16 15 0

COP2
010010

BC
01000

cc
nd
0

tf
1

offset

6 5 3 1 1 16

Branch on COP2 True Likely IBC2TL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 71

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BC2TL offset (cc = 0 implied) MIPS32
BC2TL cc, offset MIPS32

Purpose: Branch on COP2 True Likely

To test a COP2 condition code and do a PC-relative conditional branch; execute the instruction in the delay slot only
if the branch is taken.

Description: if COP2Condition(cc) = 1 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If the COP2
condition specified by cc is true (1), the program branches to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

This operation specification is for the general Branch On Condition operation with the tf (true/false) and nd (nullify
delay slot) fields as variables. The individual instructions BC2F, BC2FL, BC2T, and BC2TL have specific values for
tf and nd.

I: condition ← COP2Condition(cc) = 1
target_offset ← (offset15)

GPRLEN-(16+2) || offset || 02

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BC2T instruction instead.

31 26 25 21 20 18 17 16 15 0

COP2
010010

BC
01000

cc
nd
1

tf
1

offset

6 5 3 1 1 16

Branch on Equal BEQ

72 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BEQ rs, rt, offset MIPS32

Purpose: Branch on Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] = GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the instruction in the delay
slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional branch.

31 26 25 21 20 16 15 0

BEQ
000100

rs rt offset

6 5 5 16

Branch on Equal Likely IBEQL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 73

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BEQL rs, rt, offset MIPS32

Purpose: Branch on Equal Likely

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] = GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction in the delay slot is
executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] = GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BEQ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

31 26 25 21 20 16 15 0

BEQL
010100

rs rt offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ

74 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BGEZ rs, offset MIPS32

Purpose: Branch on Greater Than or Equal to Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] ≥ 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZ
00001

offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link IBGEZAL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 75

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BGEZAL rs, offset MIPS32

Purpose: Branch on Greater Than or Equal to Zero and Link

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN
GPR[31] ← PC + 8

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative branch and link.
BAL is used in a manner similar to JAL, but provides PC-relative addressing and a more limited target PC range.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZAL

10001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL

76 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BGEZALL rs, offset MIPS32

Purpose: Branch on Greater Than or Equal to Zero and Link Likely

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≥ 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN
GPR[31] ← PC + 8

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZAL instruction instead.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZALL

10011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely IBGEZALL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 77

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Greater Than or Equal to Zero Likely BGEZL

78 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BGEZL rs, offset MIPS32

Purpose: Branch on Greater Than or Equal to Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≥ 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective target address after the
instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BGEZL
00011

offset

6 5 5 16

Branch on Greater Than Zero IBGTZ

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 79

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BGTZ rs, offset MIPS32

Purpose: Branch on Greater Than Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] > 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BGTZ
000111

rs
0

00000
offset

6 5 5 16

Branch on Greater Than Zero Likely BGTZL

80 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BGTZL rs, offset MIPS32

Purpose: Branch on Greater Than Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] > 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BGTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

31 26 25 21 20 16 15 0

BGTZL
010111

rs
0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero IBLEZ

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 81

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BLEZ rs, offset MIPS32

Purpose: Branch on Less Than or Equal to Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] ≤ 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BLEZ
000110

rs
0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero Likely BLEZL

82 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BLEZL rs, offset MIPS32

Purpose: Branch on Less Than or Equal to Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≤ 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to the effective target
address after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is
not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLEZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

31 26 25 21 20 16 15 0

BLEZL
010110

rs
0

00000
offset

6 5 5 16

Branch on Less Than Zero IBLTZ

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 83

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BLTZ rs, offset MIPS32

Purpose: Branch on Less Than Zero

To test a GPR then do a PC-relative conditional branch

Description: if GPR[rs] < 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZ
00000

offset

6 5 5 16

Branch on Less Than Zero and Link BLTZAL

84 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BLTZAL rs, offset MIPS32

Purpose: Branch on Less Than Zero and Link

To test a GPR then do a PC-relative conditional procedure call

Description: if GPR[rs] < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZAL

10000
offset

6 5 5 16

Branch on Less Than Zero and Link Likely IBLTZALL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 85

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BLTZALL rs, offset MIPS32

Purpose: Branch on Less Than Zero and Link Likely

To test a GPR then do a PC-relative conditional procedure call; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

GPR 31 must not be used for the source register rs, because such an instruction does not have the same effect when
reexecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception
handler to resume execution by reexecuting the branch when an exception occurs in the branch delay slot.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump and link (JAL) or
jump and link register (JALR) instructions for procedure calls to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZAL instruction instead.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZALL

10010
offset

6 5 5 16

Branch on Less Than Zero and Link Likely BLTZALL

86 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

Branch on Less Than Zero Likely IBLTZL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 87

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BLTZL rs, offset MIPS32

Purpose: Branch on Less Than Zero Likely

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] < 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address after the instruction in
the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BLTZ instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

31 26 25 21 20 16 15 0

REGIMM
000001

rs
BLTZL
00010

offset

6 5 5 16

Branch on Not Equal BNE

88 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BNE rs, rt, offset MIPS32

Purpose: Branch on Not Equal

To compare GPRs then do a PC-relative conditional branch

Description: if GPR[rs] ≠ GPR[rt] then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0

BNE
000101

rs rt offset

6 5 5 16

Branch on Not Equal Likely IBNEL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 89

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BNEL rs, rt, offset MIPS32

Purpose: Branch on Not Equal Likely

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the branch is taken.

Description: if GPR[rs] ≠ GPR[rt] then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the
delay slot is executed. If the branch is not taken, the instruction in the delay slot is not executed.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: target_offset ← sign_extend(offset || 02)
condition ← (GPR[rs] ≠ GPR[rt])

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

Some implementations always predict the branch will be taken, so there is a significant penalty if the branch is not
taken. Software should only use this instruction when there is a very high probability (98% or more) that the branch
will be taken. If the branch is not likely to be taken or if the probability of a taken branch is unknown, software is
encouraged to use the BNE instruction instead.

Historical Information:

In the MIPS I architecture, this instruction signaled a Reserved Instruction Exception.

31 26 25 21 20 16 15 0

BNEL
010101

rs rt offset

6 5 5 16

Breakpoint BREAK

90 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: BREAK MIPS32

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(Breakpoint)

Exceptions:

Breakpoint

31 26 25 6 5 0

SPECIAL
000000

code
BREAK
001101

6 20 6

Floating Point Compare IC.cond.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 91

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: C.cond.fmt
C.cond.S fs, ft (cc = 0 implied) MIPS32
C.cond.D fs, ft (cc = 0 implied) MIPS32
C.cond.PS fs, ft(cc = 0 implied) MIPS64, MIPS32 Release 2
C.cond.S cc, fs, ft MIPS32
C.cond.D cc, fs, ft MIPS32
C.cond.PS cc, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Compare

To compare FP values and record the Boolean result in a condition code

Description: FPUConditionCode(cc) ← FPR[fs] compare_cond FPR[ft]

The value in FPR fs is compared to the value in FPR ft; the values are in format fmt. The comparison is exact and nei-
ther overflows nor underflows.

If the comparison specified by cond2..1 is true for the operand values, the result is true; otherwise, the result is false. If
no exception is taken, the result is written into condition code CC; true is 1 and false is 0.

c.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into condi-
tion codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of the
instruction is UNPREDICTABLE.

If one of the values is an SNaN, or cond3 is set and at least one of the values is a QNaN, an Invalid Operation condi-
tion is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation Enable bit is set in the FCSR,
no result is written and an Invalid Operation exception is taken immediately. Otherwise, the Boolean result is written
into condition code CC.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,
equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. If the equal relation is true, for example, then all four example predicates above yield a true result.
If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

Logical negation of a compare result allows eight distinct comparisons to test for the 16 predicates as shown in Table
3.25. Each mnemonic tests for both a predicate and its logical negation. For each mnemonic, compare tests the truth
of the first predicate. When the first predicate is true, the result is true as shown in the “If Predicate Is True” column,
and the second predicate must be false, and vice versa. (Note that the False predicate is never true and False/True do
not follow the normal pattern.)

The truth of the second predicate is the logical negation of the instruction result. After a compare instruction, test for
the truth of the first predicate can be made with the Branch on FP True (BC1T) instruction and the truth of the second
can be made with Branch on FP False (BC1F).

Table 3.26 shows another set of eight compare operations, distinguished by a cond3 value of 1 and testing the same 16
conditions. For these additional comparisons, if at least one of the operands is a NaN, including Quiet NaN, then an
Invalid Operation condition is raised. If the Invalid Operation condition is enabled in the FCSR, an Invalid Operation

31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0

COP1
010001

fmt ft fs cc 0
A
0

FC
11

cond

6 5 5 5 3 1 1 2 4

Floating Point Compare C.cond.fmt

92 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

exception occurs.

Table 3.25 FPU Comparisons Without Special Operand Exceptions

Instruction Comparison Predicate Comparison CC Result Instruction

Cond
Mnemonic

Name of Predicate and Logically Negated
Predicate (Abbreviation)

Relation
Values

If Predicate
Is True

Inv Op
Excp. if
QNaN?

Condition
Field

> < = ? 3 2..0

F False [this predicate is always False] F F F F F No 0 0

True (T) T T T T

UN Unordered F F F T T 1

Ordered (OR) T T T F F

EQ Equal F F T F T 2

Not Equal (NEQ) T T F T F

UEQ Unordered or Equal F F T T T 3

Ordered or Greater Than or Less Than (OGL) T T F F F

OLT Ordered or Less Than F T F F T 4

Unordered or Greater Than or Equal (UGE) T F T T F

ULT Unordered or Less Than F T F T T 5

Ordered or Greater Than or Equal (OGE) T F T F F

OLE Ordered or Less Than or Equal F T T F T 6

Unordered or Greater Than (UGT) T F F T F

ULE Unordered or Less Than or Equal F T T T T 7

Ordered or Greater Than (OGT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Floating Point Compare IC.cond.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 93

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 3.26 FPU Comparisons With Special Operand Exceptions for QNaNs

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPREDICT-
ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of C.cond.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the condi-
tion code number is odd.

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or

QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond3 and (QNaN(ValueFPR(fs,fmt)) or QNaN(ValueFPR(ft,fmt)))) then

SignalException(InvalidOperation)
endif

else
less ← ValueFPR(fs, fmt) <fmt ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) =fmt ValueFPR(ft, fmt)
unordered ← false

endif

Instruction Comparison Predicate Comparison CC Result Instruction

Cond
Mnemonic

Name of Predicate and Logically Negated
Predicate (Abbreviation)

Relation
Values

If Predicate
Is True

Inv Op
Excp If
QNaN?

Condition
Field

> < = ? 3 2..0

SF Signaling False [this predicate always False] F F F F F Yes 1 0

Signaling True (ST) T T T T

NGLE Not Greater Than or Less Than or Equal F F F T T 1

Greater Than or Less Than or Equal (GLE) T T T F F

SEQ Signaling Equal F F T F T 2

Signaling Not Equal (SNE) T T F T F

NGL Not Greater Than or Less Than F F T T T 3

Greater Than or Less Than (GL) T T F F F

LT Less Than F T F F T 4

Not Less Than (NLT) T F T T F

NGE Not Greater Than or Equal F T F T T 5

Greater Than or Equal (GE) T F T F F

LE Less Than or Equal F T T F T 6

Not Less Than or Equal (NLE) T F F T F

NGT Not Greater Than F T T T T 7

Greater Than (GT) T F F F F

Key: ? = unordered, > = greater than, < = less than, = is equal, T = True, F = False

Floating Point Compare C.cond.fmt

94 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

condition ← (cond2 and less) or (cond1 and equal)
or (cond0 and unordered)

SetFPConditionCode(cc, condition)

For c.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as an
independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The
results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

Programming Notes:

FP computational instructions, including compare, that receive an operand value of Signaling NaN raise the Invalid
Operation condition. Comparisons that raise the Invalid Operation condition for Quiet NaNs in addition to SNaNs
permit a simpler programming model if NaNs are errors. Using these compares, programs do not need explicit code
to check for QNaNs causing the unordered relation. Instead, they take an exception and allow the exception handling
system to deal with the error when it occurs. For example, consider a comparison in which we want to know if two
numbers are equal, but for which unordered would be an error.

comparisons using explicit tests for QNaN
c.eq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
c.un.d $f2,$f4 # it is not equal,

but might be unordered
bc1t ERROR # unordered goes off to an error handler

not-equal-case code here
...

equal-case code here
L2:
--
comparison using comparisons that signal QNaN

c.seq.d $f2,$f4 # check for equal
nop
bc1t L2 # it is equal
nop

it is not unordered here
...

not-equal-case code here
...

equal-case code here

Perform Cache Operation ICACHE

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 95

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CACHE op, offset(base) MIPS32

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Figure 3.2 Usage of Address Fields to Select Index and Way

31 26 25 21 20 16 15 0

CACHE
101111

base op offset

6 5 5 16

Table 3.27 Usage of Effective Address

Operation
Requires an

Type of
Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physi-
cal address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-
mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, a kseg0 address should always be
used for cache operations that require an index. See the Programming Notes sec-
tion below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit + Ceiling(Log2(A))
Way ← AddrWayBit-1..IndexBit
Index ← AddrIndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte indexUnused Way Index Byte Index

0

WayBit IndexBit OffsetBit

Perform Cache Operation CACHE

96 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

For implementations which implement multiple level of caches and where the hardware maintains the smaller cache
as a proper subset of a larger cache (every address which is resident in the smaller cache is also resident in the larger
cache; also known as the inclusion property), it is recommended that the CACHE instructions which operate on the
larger, outer-level cache; should first operate on the smaller, inner-level cache. For example, a Hit_Writeback
_Invalidate operation targetting the Secondary cache, should first operate on the primary data cache first. If the
CACHE instruction implementation does not follow this policy then any software which flushes the caches must
mimic this behavior. That is, the software sequences must first operate on the inner cache then operate on the outer
cache. The software must place a SYNC instruction after the CACHE instruction whenever there are possible write-
backs from the inner cache to ensure that the writeback data is resident in the outer cache before operating on the
outer cache. If neither the CACHE instruction implementation nor the software cache flush sequence follow this pol-
icy, then the inclusion property of the caches can be broken, which might be a condition that the cache management
hardware can not properly deal with.

For implementations which implement muliple level of caches without the inclusion property, the use of a SYNC
instruction after the CACHE instruction is still needed whenever writeback data has to be resident in the next level of
memory hierarchy.

Table 3.28 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache

0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

0b11 S Secondary

Perform Cache Operation ICACHE

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 97

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect all coherent caches within the implementation. If the effective address uses a coherent
Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

0b000 I Index Invalidate Index Set the state of the cache block at the specified
index to invalid.
This required encoding may be used by soft-
ware to invalidate the entire instruction cache
by stepping through all valid indices.

Required

D Index Writeback
Invalidate / Index

Invalidate

Index For a write-back cache: If the state of the
cache block at the specified index is valid and
dirty, write the block back to the memory
address specified by the cache tag. After that
operation is completed, set the state of the
cache block to invalid. If the block is valid but
not dirty, set the state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by soft-
ware to invalidate the entire data cache by
stepping through all valid indices. Note that
Index Store Tag should be used to initialize the
cache at powerup.

Required

S, T Index Writeback
Invalidate / Index

Invalidate

Index Required if S, T
cache is imple-

mented

0b001 All Index Load Tag Index Read the tag for the cache block at the speci-
fied index into the TagLo and TagHi Copro-
cessor 0 registers. If the DataLo and DataHi
registers are implemented, also read the data
corresponding to the byte index into the
DataLo and DataHi registers. This operation
must not cause a Cache Error Exception.
The granularity and alignment of the data read
into the DataLo and DataHi registers is
implementation-dependent, but is typically the
result of an aligned access to the cache, ignor-
ing the appropriate low-order bits of the byte
index.

Recommended

Perform Cache Operation CACHE

98 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

0b010 All Index Store Tag Index Write the tag for the cache block at the speci-
fied index from the TagLo and TagHi Copro-
cessor 0 registers. This operation must not
cause a Cache Error Exception.
This required encoding may be used by soft-
ware to initialize the entire instruction or data
caches by stepping through all valid indices.
Doing so requires that the TagLo and TagHi
registers associated with the cache be initial-
ized first.

Required

0b011 All Implementation
Dependent

Unspecified Available for implementation-dependent oper-
ation.

Optional

0b100 I, D Hit Invalidate Address If the cache block contains the specified
address, set the state of the cache block to
invalid.
This required encoding may be used by soft-
ware to invalidate a range of addresses from
the instruction cache by stepping through the
address range by the line size of the cache.

In multiprocessor implementations with
coherent caches, the operation may optionally
be broadcast to all coherent caches within the
system.

Required (Instruc-
tion Cache Encod-

ing Only),
Recommended oth-

erwise

S, T Hit Invalidate Address Optional, if
Hit_Invalidate_D is
implemented, the S
and T variants are

recommended.

0b101 I Fill Address Fill the cache from the specified address. Recommended

D Hit Writeback
Invalidate / Hit

Invalidate

Address For a write-back cache: If the cache block con-
tains the specified address and it is valid and
dirty, write the contents back to memory. After
that operation is completed, set the state of the
cache block to invalid. If the block is valid but
not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
This required encoding may be used by soft-
ware to invalidate a range of addresses from
the data cache by stepping through the address
range by the line size of the cache.

In multiprocessor implementations with
coherent caches, the operation may optionally
be broadcast to all coherent caches within the
system.

Required

S, T Hit Writeback
Invalidate / Hit

Invalidate

Address Required if S, T
cache is imple-

mented

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

Perform Cache Operation ICACHE

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 99

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

0b110 D Hit Writeback Address If the cache block contains the specified
address and it is valid and dirty, write the con-
tents back to memory. After the operation is
completed, leave the state of the line valid, but
clear the dirty state. For a write-through cache,
this operation may be treated as a nop.

In multiprocessor implementations with
coherent caches, the operation may optionally
be broadcast to all coherent caches within the
system.

Recommended

S, T Hit Writeback Address Optional, if
Hit_Writeback_D is
implemented, the S
and T variants are

recommended.

0b111 I, D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a
writeback if required, and set the state to valid
and locked. If the cache already contains the
specified address, set the state to locked. In
set-associative or fully-associative caches, the
way selected on a fill from memory is imple-
mentation dependent.
The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate
operation to the locked line, or via an Index
Store Tag operation to the line that clears the
lock bit. Note that clearing the lock state via
Index Store Tag is dependent on the imple-
mentation-dependent cache tag and cache line
organization, and that Index and Index Write-
back Invalidate operations are dependent on
cache line organization. Only Hit and Hit
Writeback Invalidate operations are generally
portable across implementations.
It is implementation dependent whether a
locked line is displaced as the result of an
external invalidate or intervention that hits on
the locked line. Software must not depend on
the locked line remaining in the cache if an
external invalidate or intervention would inval-
idate the line if it were not locked.
It is implementation dependent whether a
Fetch and Lock operation affects more than
one line. For example, more than one line
around the referenced address may be fetched
and locked. It is recommended that only the
single line containing the referenced address
be affected.

Recommended

Table 3.29 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Code Caches Name

Effective
Address
Operand

Type Operation
Compliance
Implemented

Perform Cache Operation CACHE

100 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

li a1, 0x80000000 /* Base of kseg0 segment */
or a0, a0, a1 /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a1) /* Perform the index store tag operation */

Fixed Point Ceiling Convert to Long Fixed Point ICEIL.L.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 101

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CEIL.L.fmt
CEIL.L.S fd, fs MIPS64, MIPS32 Release 2
CEIL.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose: Fixed Point Ceiling Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding up

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

CEIL.L
001010

6 5 5 5 5 6

Floating Point Ceiling Convert to Word Fixed Point CEIL.W.fmt

102 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CEIL.W.fmt
CEIL.W.S fd, fs MIPS32
CEIL.W.D fd, fs MIPS32

Purpose: Floating Point Ceiling Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding up

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward +∞
(rounding mode 2). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

CEIL.W
001110

6 5 5 5 5 6

Move Control Word From Floating Point ICFC1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 103

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CFC1 rt, fs MIPS32

Purpose: Move Control Word From Floating Point

To copy a word from an FPU control register to a GPR

Description: GPR[rt] ← FP_Control[fs]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt, sign-extending it to 64 bits.

Restrictions:

There are a few control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifies a
register that does not exist.

Operation:

if fs = 0 then
temp ← FIR

elseif fs = 25 then
temp ← 024 || FCSR31..25 || FCSR23

elseif fs = 26 then
temp ← 014 || FCSR17..12 || 0

5 || FCSR6..2 || 0
2

elseif fs = 28 then
temp ← 020 || FCSR11.7 || 0

4 || FCSR24 || FCSR1..0
elseif fs = 31 then

temp ← FCSR
else

temp ← UNPREDICTABLE
endif
GPR[rt] ← sign_extend(temp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS I, II and III architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-
ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

31 26 25 21 20 16 15 11 10 0

COP1
010001

CF
00010

rt fs
0

000 0000 0000

6 5 5 5 11

Move Control Word From Coprocessor 2 CFC2

104 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CFC2 rt, rd MIPS32

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2

To copy a word from a Coprocessor 2 control register to a GPR

Description: GPR[rt] ← CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field, sign-extending it to 64 bits.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ← CP2CCR[Impl]
GPR[rt] ← sign_extend(temp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2
010010

CF
00010

rt Impl

6 5 5 16

Count Leading Ones in Word ICLO

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 105

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CLO rd, rs MIPS32

Purpose: Count Leading Ones in Word

To Count the number of leading ones in a word

Description: GPR[rd] ← count_leading_ones GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPR rd. If all of bits 31..0 were set in GPR rs, the result written to GPR rd is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← 32
for i in 31 .. 0

if GPR[rs]i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
CLO

100001

6 5 5 5 5 6

Coprocessor Operation to Coprocessor 2 COP2

106 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: COP2 func MIPS32

Purpose: Coprocessor Operation to Coprocessor 2

To perform an operation to Coprocessor 2

Description: CoprocessorOperation(2, cofun)

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and internal state are
described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation(2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

31 26 25 24 0

COP2
010010

CO
1

cofun

6 1 25

Count Leading Zeros in Word ICLZ

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 107

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CLZ rd, rs MIPS32

Purpose: Count Leading Zeros in Word

Count the number of leading zeros in a word

Description: GPR[rd] ← count_leading_zeros GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPR rd. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) then
UNPREDICTABLE

endif
temp ← 32
for i in 31 .. 0

if GPR[rs]i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
CLZ

100000

6 5 5 5 5 6

Move Control Word to Floating Point CTC1

108 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CTC1 rt, fs MIPS32

Purpose: Move Control Word to Floating Point

To copy a word from a GPR to an FPU control register

Description: FP_Control[fs] ← GPR[rt]

Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit and
its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR to set a
cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set causes
the appropriate exception. The register is written before the exception occurs and the EPC register contains the
address of the CTC1 instruction.

Restrictions:

There are a few control registers defined for the floating point unit. The result is UNPREDICTABLE if fs specifies a
register that does not exist.

Operation:

temp ← GPR[rt]31..0
if fs = 25 then /* FCCR */

if temp31..8 ≠ 024 then
UNPREDICTABLE

else
FCSR ← temp7..1 || FCSR24 || temp0 || FCSR22..0

endif
elseif fs = 26 then /* FEXR */

if temp22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..18 || temp17..12 || FCSR11..7 ||
temp6..2 || FCSR1..0

endif
elseif fs = 28 then /* FENR */

if temp22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← FCSR31..25 || temp2 || FCSR23..12 || temp11..7
|| FCSR6..2 || temp1..0

endif
elseif fs = 31 then /* FCSR */

if temp22..18 ≠ 0 then
UNPREDICTABLE

else
FCSR ← temp

endif
else

UNPREDICTABLE
endif

31 26 25 21 20 16 15 11 10 0

COP1
010001

CT
00110

rt fs
0

000 0000 0000

6 5 5 5 11

Move Control Word to Floating Point ICTC1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 109

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

CheckFPException()Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control register fs are undefined for the instruc-
tion immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, II, III, or IV.

Move Control Word to Coprocessor 2 CTC2

110 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CTC2 rt, rd MIPS32

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word to Coprocessor 2

To copy a word from a GPR to a Coprocessor 2 control register

Description: CP2CCR[Impl] ← GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The result is UNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ← GPR[rt]31..0
CP2CCR[Impl] ← temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP2
010010

CT
00110

rt Impl

6 5 5 16

Floating Point Convert to Double Floating Point ICVT.D.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 111

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CVT.D.fmt
CVT.D.S fd, fs MIPS32
CVT.D.W fd, fs MIPS32
CVT.D.L fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Convert to Double Floating Point

To convert an FP or fixed point value to double FP

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd. If fmt is S or W, then the operation is always
exact.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for double floating point—if they are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:

StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

CVT.D
100001

6 5 5 5 5 6

Floating Point Convert to Long Fixed Point CVT.L.fmt

112 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CVT.L.fmt
CVT.L.S fd, fs MIPS64, MIPS32 Release 2
CVT.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-bit fixed point

Description: FPR[fd] ← convert_and_round(FPR[fs])

Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

CVT.L
100101

6 5 5 5 5 6

Floating Point Convert Pair to Paired Single ICVT.PS.S

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 113

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CVT.PS.S fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Convert Pair to Paired Single

To convert two FP values to a paired single value

Description: FPR[fd] ← FPR[fs]31..0 || FPR[ft]31..0

The single-precision values in FPR fs and ft are written into FPR fd as a paired-single value. The value in FPR fs is
written into the upper half, and the value in FPR ft is written into the lower half.

CVT.PS.S is similar to PLL.PS, except that it expects operands of format S instead of PS.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type S; if they are not valid, the result is UNPREDICT-
ABLE.

The operand must be a value in format S; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, S, ValueFPR(fs,S) || ValueFPR(ft,S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10000

ft fs fd
CVT.PS
100110

6 5 5 5 5 6

31 310 0

63 3132 0

fs ft

fd

63 32 31 0

31 031 0

fs ft

fd

Floating Point Convert to Single Floating Point CVT.S.fmt

114 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CVT.S.fmt
CVT.S.D fd, fs MIPS32
CVT.S.W fd, fs MIPS32
CVT.S.L fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Convert to Single Floating Point

To convert an FP or fixed point value to single FP

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers
mode.

Operation:

StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

CVT.S
100000

6 5 5 5 5 6

Floating Point Convert Pair Lower to Single Floating Point ICVT.S.PL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 115

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CVT.S.PL fd, fs MIPS64, MIPS32 Release 2

Purpose:

Floating Point Convert Pair Lower to Single Floating Point

To convert one half of a paired single FP value to single FP

Description: FPR[fd] ← FPR[fs]31..0

The lower paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR fd. This instruction can be used to isolate the lower half of a paired single value.

The operation is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PL is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PL, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10110

0
00000

fs fd
CVT.S.PL

101000

6 5 5 5 5 6

Floating Point Convert Pair Upper to Single Floating Point CVT.S.PU

116 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CVT.S.PU fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Convert Pair Upper to Single Floating Point

To convert one half of a paired single FP value to single FP

Description: FPR[fd] ← FPR[fs]63..32

The upper paired single value in FPR fs, in format PS, is converted to a value in single floating point format. The
result is placed in FPR fd. This instruction can be used to isolate the upper half of a paired single value.

The operation is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type PS and fd for single floating point. If they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format PS; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of CVT.S.PU is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, S, ConvertFmt(ValueFPR(fs, PS), PU, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10110

0
00000

fs fd
CVT.S.PU

100000

6 5 5 5 5 6

Floating Point Convert to Word Fixed Point ICVT.W.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 117

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: CVT.W.fmt
CVT.W.S fd, fs MIPS32
CVT.W.D fd, fs MIPS32

Purpose: Floating Point Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

CVT.W
100100

6 5 5 5 5 6

Doubleword Add DADD

118 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DADD rd, rs, rt MIPS64

Purpose: Doubleword Add

To add 64-bit integers. If overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs to produce a 64-bit result. If the addi-
tion results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Integer
Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

Operation:

temp ← (GPR[rs]63||GPR[rs]) + (GPR[rt]63||GPR[rt])
if (temp64 ≠ temp63) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
DADD
101100

6 5 5 5 5 6

Doubleword Add Immediate IDADDI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 119

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DADDI rt, rs, immediate MIPS64

Purpose: Doubleword Add Immediate

To add a constant to a 64-bit integer. If overflow occurs, then trap.

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs to produce a 64-bit result. If the addition results in
64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Integer Overflow
exception occurs. If it does not overflow, the 64-bit result is placed into GPR rt.

Restrictions:

Operation:

temp ← (GPR[rs]63||GPR[rs]) + sign_extend(immediate)
if (temp64 ≠ temp63) then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDIU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 0

DADDI
011000

rs rt immediate

6 5 5 16

Doubleword Add Immediate Unsigned DADDIU

120 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DADDIU rt, rs, immediate MIPS64

Purpose: Doubleword Add Immediate Unsigned

To add a constant to a 64-bit integer

Description: GPR[rt] ← GPR[rs] + immediate

The 16-bit signed immediate is added to the 64-bit value in GPR rs and the 64-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[rt] ← GPR[rs] + sign_extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 0

DADDIU
011001

rs rt immediate

6 5 5 16

Doubleword Add Unsigned IDADDU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 121

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DADDU rd, rs, rt MIPS64

Purpose: Doubleword Add Unsigned

To add 64-bit integers

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs and the 64-bit arithmetic result is
placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation:

GPR[rd] ← GPR[rs] + GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
DADDU
101101

6 5 5 5 5 6

Count Leading Ones in Doubleword DCLO

122 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DCLO rd, rs MIPS64

Purpose: Count Leading Ones in Doubleword

To count the number of leading ones in a doubleword

Description: GPR[rd] ← count_leading_ones GPR[rs]

The 64-bit word in GPR rs is scanned from most-significant to least-significant bit. The number of leading ones is
counted and the result is written to GPR rd. If all 64 bits were set in GPR rs, the result written to GPR rd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values.

Operation:

temp <- 64
for i in 63.. 0

if GPR[rs]i = 0 then
temp <- 63 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
DCLO
100101

6 5 5 5 5 6

Count Leading Zeros in Doubleword IDCLZ

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 123

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DCLZ rd, rs MIPS64

Purpose: Count Leading Zeros in Doubleword

To count the number of leading zeros in a doubleword

Description: GPR[rd] ← count_leading_zeros GPR[rs]

The 64-bit word in GPR rs is scanned from most significant to least significant bit. The number of leading zeros is
counted and the result is written to GPR rd. If no bits were set in GPR rs, the result written to GPR rd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values.

Operation:

temp <- 64
for i in 63.. 0

if GPR[rs]i = 1 then
temp <- 63 - i
break

endif
endfor
GPR[rd] <- temp

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
DCLZ
100100

6 5 5 5 5 6

Doubleword Divide DDIV

124 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DDIV rs, rt MIPS64

Purpose: Doubleword Divide

To divide 64-bit signed integers

Description: (LO, HI) ← GPR[rs] / GPR[rt]

The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt, treating both operands as signed val-
ues. The 64-bit quotient is placed into special register LO and the 64-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:

LO ← GPR[rs] div GPR[rt]
HI ← GPR[rs] mod GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all
subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DDIV
011110

6 5 5 10 6

Doubleword Divide Unsigned IDDIVU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 125

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DDIVU rs, rt MIPS64

Purpose: Doubleword Divide Unsigned

To divide 64-bit unsigned integers

Description: (LO, HI) ← GPR[rs] / GPR[rt]

The 64-bit doubleword in GPR rs is divided by the 64-bit doubleword in GPR rt, treating both operands as unsigned
values. The 64-bit quotient is placed into special register LO and the 64-bit remainder is placed into special register
HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation:

q ← (0 || GPR[rs]) div (0 || GPR[rt])
r ← (0 || GPR[rs]) mod (0 || GPR[rt])
LO ← q63..0
HI ← r63..0

Exceptions:

Reserved Instruction

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and MIPS32 and all
subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DDIVU
011111

6 5 5 10 6

Debug Exception Return DERET

126 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DERET EJTAG

Purpose: Debug Exception Return

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instruction, a
CP0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.The operation of the processor is UNDE-
FINED if a DERET is executed in the delay slot of a branch or jump instruction.

Operation:

DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPC63..1 || 0
ISAMode ← DEPC0

else
PC ← DEPC

endif
ClearHazards()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

DERET
011111

6 1 19 6

Doubleword Extract Bit Field IDEXT

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 127

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DEXT rt, rs, pos, size MIPS64 Release 2

Purpose: Doubleword Extract Bit Field

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ← ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and lsb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ← size-1
lsb ← pos
msb ← lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 63

Figure 3-3 shows the symbolic operation of the instruction.

Figure 3.3 Operation of the DEXT Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as derived
from msbd and lsb) and lsb of the field (which implies restrictions on pos and size), as follows:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msbd

(size-1)
lsb

(pos)
DEXT
000011

6 5 5 5 5 6

msbd lsb msb pos size Instruction Comment

0 ≤ msbd < 32 0 ≤ lsb < 32 0 ≤ msb < 63 0 ≤ pos < 32 1 ≤ size ≤ 32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0 ≤ msbd < 32 32 ≤ lsb < 64 32 ≤ msb < 64 32 ≤ pos < 64 1 ≤ size ≤ 32 DEXTU The field is 32 bits or less and starts in the
left-most word of the doubleword

32 ≤ msbd <
64

0 ≤ lsb < 32 32 ≤ msb < 64 0 ≤ pos < 32 32 < size ≤ 64 DEXTM The field is larger than 32 bits and starts in
the right-most word of the doubleword

63
pos+size

lsb+msbd+1
 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial Value

IJKL MNOP QRST
32-(pos+size)

32-(lsb+msbd+1)
size

msbd+1
pos
lsb

63
size

msbd+1
size-1
 msbd 0

GPR rt Final
Value

0 MNOP
32-size

32-(msbd+1)
size

msbd+1

pos+size
lsb+msbd+1

pos+size-1
lsb+msbd

pos
lsb63

pos-1
lsb-1 0

32-size
32-(msbd+1)

size
msbd+1

IJKL MNOP QRSTGPR rs
Initial
Value

MNOP0

63 0
size-1
msbd

size
msbd+1

GPR rs
Final
Value

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

Doubleword Extract Bit Field DEXT

128 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Because of the limits on the values of msbd and lsb, there is no UNPREDICTABLE case for this instruction.

Operation:

GPR[rt] ← 063-(msbd+1) || GPR[rs]msbd+lsb..lsb

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size ≤ 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

Doubleword Extract Bit Field Middle IDEXTM

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 129

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DEXTM rt, rs, pos, size MIPS64 Release 2

Purpose: Doubleword Extract Bit Field Middle

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ← ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbdminus32 (the most significant bit of the destination field in GPR rt, minus 32), in instruction
bits 15..11, and lsb (least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbdminus32 ← size-1-32
lsb ← pos
msbd ← msbdminus32 + 32
msb ← lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
32 < size ≤ 64
32 < pos+size ≤ 64

Figure 3-4 shows the symbolic operation of the instruction.

Figure 3.4 Operation of the DEXTM Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as derived
from msbd and lsb) and lsb of the field (which implies restrictions on pos and size), as follows:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msbdminus32

(size-1-32)
lsb

(pos)
DEXTM
000001

6 5 5 5 5 6

msbd lsb msb pos size Instruction Comment

0 ≤ msbd < 32 0 ≤ lsb < 32 0 ≤ msb < 63 0 ≤ pos < 32 1 ≤ size ≤ 32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0 ≤ msbd < 32 32 ≤ lsb < 64 32 ≤ msb < 64 32 ≤ pos < 64 1 ≤ size ≤ 32 DEXTU The field is 32 bits or less and starts in the
left-most word of the doubleword

63
pos+size

lsb+msbd+1
 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial Value

IJKL MNOP QRST
32-(pos+size)

32-(lsb+msbd+1)
size

msbd+1
pos
lsb

63
size

msbd+1
size-1
 msbd 0

GPR rt Final
Value

0 MNOP
32-size

32-(msbd+1)
size

msbd+1

pos+size
lsb+msbd+1

pos+size-1
lsb+msbd

pos
lsb63

pos-1
lsb-1 0

32-size
32-(msbd+1)

size
msbd+1

IJKL MNOP QRSTGPR rs
Initial
Value

MNOP0

63 0
size-1
msbd

size
msbd+1

GPR rs
Final
Value

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

Doubleword Extract Bit Field Middle DEXTM

130 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if (lsb + msbd + 1) > 64.

Operation:

msbd ← msbdminus32 + 32
if ((lsb + msbd + 1) > 64) then

UNPREDICTABLE
endif
GPR[rt] ← 063-(msbd+1) || GPR[rs]msbd+lsb..pos

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size ≤ 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

32 ≤ msbd < 64 0 ≤ lsb < 32 32 ≤ msb < 64 0 ≤ pos < 32 32 < size ≤ 64 DEXTM The field is larger than 32 bits and starts in
the right-most word of the doubleword

msbd lsb msb pos size Instruction Comment

Doubleword Extract Bit Field Upper IDEXTU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 131

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DEXTU rt, rs, pos, size MIPS64 Release 2

Purpose: Doubleword Extract Bit Field Upper

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ← ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and
lsbminus32 (least significant bit of the source field in GPR rs, minus32), in instruction bits 10..6, as follows:

msbd ← size-1
lsbminus32 ← pos-32
lsb ← lsbminus32 + 32
msb ← lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:

32 ≤ pos < 64
0 < size ≤ 32
32 < pos+size ≤ 64

Figure 3-5 shows the symbolic operation of the instruction.

Figure 3.5 Operation of the DEXTU Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as derived
from msbd and lsb) and lsb of the field (which implies restrictions on pos and size), as follows:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msbd

(size-1)
lsbminus32

(pos-32)
DEXTU
000010

6 5 5 5 5 6

msbd lsb msb pos size Instruction Comment

0 ≤ msbd < 32 0 ≤ lsb < 32 0 ≤ msb < 63 0 ≤ pos < 32 1 ≤ size ≤ 32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0 ≤ msbd < 32 32 ≤ lsb < 64 32 ≤ msb < 64 32 ≤ pos < 64 1 ≤ size ≤ 32 DEXTU The field is 32 bits or less and starts in the
left-most word of the doubleword

63
pos+size

lsb+msbd+1
 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial Value

IJKL MNOP QRST
32-(pos+size)

32-(lsb+msbd+1)
size

msbd+1
pos
lsb

63
size

msbd+1
size-1
 msbd 0

GPR rt Final
Value

0 MNOP
32-size

32-(msbd+1)
size

msbd+1

pos+size
lsb+msbd+1

pos+size-1
lsb+msbd

pos
lsb63

pos-1
lsb-1 0

32-size
32-(msbd+1)

size
msbd+1

IJKL MNOP QRSTGPR rs
Initial
Value

MNOP0

63 0
size-1
msbd

size
msbd+1

GPR rs
Final
Value

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

Doubleword Extract Bit Field Upper DEXTU

132 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if (lsb + msbd + 1) > 64.

Operation:

lsb ← lsbminus32 + 32
if ((lsb + msbd + 1) > 64) then

UNPREDICTABLE
endif
GPR[rt] ← 063-(msbd+1) || GPR[rs]msbd+lsb..pos

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size ≤ 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

32 ≤ msbd < 64 0 ≤ lsb < 32 32 ≤ msb < 64 0 ≤ pos < 32 32 < size ≤ 64 DEXTM The field is larger than 32 bits and starts in
the right-most word of the doubleword

msbd lsb msb pos size Instruction Comment

Disable Interrupts IDI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 133

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DI MIPS32 Release 2
DI rt MIPS32 Release 2

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rt] ← Status; StatusIE ← 0

The current value of the Status register is sign-extended and loaded into general register rt. The Interrupt Enable (IE)
bit in the Status register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and EI have a specific value for the sc field.

data ← Status
GPR[rt] ← sign_extend(data)
StatusIE ← 0

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0100 00

MFMC0
01 011

rt
12

0110 0
0

000 00
sc
0

0
0 0

0
000

6 5 5 5 5 1 2 3

Doubleword Insert Bit Field DINS

134 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DINS rt, rs, pos, size MIPS64 Release 2

Purpose: Doubleword Insert Bit Field

To merge a right-justified bit field from GPR rs into a specified position in GPR rt.

Description: GPR[rt] ← InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and lsb (least significant bit of the
field), in instruction bits 10..6, as follows:

msb ← pos+size-1
lsb ← pos

For this instruction, the values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-6 shows the symbolic operation of the instruction.

Figure 3.6 Operation of the DINS Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and lsb of
the field (which implies restrictions on pos and size), as follows:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msb

(pos+size-1)
lsb

(pos)
DINS

000111

6 5 5 5 5 6

63
size

msb-lsb+1
 size-1

 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

63
pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

 63
pos+size

msb+1
pos+size-1

msb
pos
lsb

pos-1
lsb-1 0

GPR rt Final
Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

Doubleword Insert Bit Field IDINS

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 135

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if lsb > msb.

Operation:

if (lsb > msb) then
UNPREDICTABLE

endif
GPR[rt] ← GPR[rt]63..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size ≤ 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

msb lsb pos size Instruction Comment

0 ≤ msb < 32 0 ≤ lsb < 32 0 ≤ pos < 32 1 ≤ size ≤ 32 DINS The field is entirely contained in the
right-most word of the doubleword

32 ≤ msb < 64 0 ≤ lsb < 32 0 ≤ pos < 32 2 ≤ size ≤ 64 DINSM The field straddles the words of the
doubleword

32 ≤ msb < 64 32 ≤ lsb < 64 32 ≤ pos < 64 1 ≤ size ≤ 32 DINSU The field is entirely contained in the
left-most word of the doubleword

Doubleword Insert Bit Field Middle DINSM

136 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DINSM rt, rs, pos, size MIPS64 Release 2

Purpose: Doubleword Insert Bit Field Middle

To merge a right-justified bit field from GPR rs into a specified position in GPR rt.

Description: GPR[rt] ← InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are inserted into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msbminus32 (the most significant bit of the field, minus 32), in instruction bits 15..11, and lsb (least signif-
icant bit of the field), in instruction bits 10..6, as follows:

msbminus32 ← pos+size-1-32
lsb ← pos
msb ← msbminus32 + 32

For this instruction, the values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
2 ≤ size ≤ 64
32 < pos+size ≤ 64

Figure 3-7 shows the symbolic operation of the instruction.

Figure 3.7 Operation of the DINSM Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and lsb of
the field (which implies restrictions on pos and size), as follows:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msbminus32
(pos+size-33)

lsb
(pos)

DINSM
000101

6 5 5 5 5 6

63
size

msb-lsb+1
 size-1

 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

63
pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

 63
pos+size

msb+1
pos+size-1

msb
pos
lsb

pos-1
lsb-1 0

GPR rt Final
Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

Doubleword Insert Bit Field Middle IDINSM

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 137

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Because of the instruction format, lsb can never be greater than msb, so there is no UNPREDICATABLE case for
this instruction.

Operation:

msb ← msbminus32 + 32
GPR[rt] ← GPR[rt]63..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size ≤ 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

msb lsb pos size Instruction Comment

0 ≤ msb < 32 0 ≤ lsb < 32 0 ≤ pos < 32 1 ≤ size ≤ 32 DINS The field is entirely contained in the
right-most word of the doubleword

32 ≤ msb < 64 0 ≤ lsb < 32 0 ≤ pos < 32 2 ≤ size ≤ 64 DINSM The field straddles the words of the
doubleword

32 ≤ msb < 64 32 ≤ lsb < 64 32 ≤ pos < 64 1 ≤ size ≤ 32 DINSU The field is entirely contained in the
left-most word of the doubleword

Doubleword Insert Bit Field Upper DINSU

138 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DINSU rt, rs, pos, size MIPS64 Release 2

Purpose: Doubleword Insert Bit Field Upper

To merge a right-justified bit field from GPR rs into a specified position in GPR rt.

Description: GPR[rt] ← InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are inserted into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msbminus32 (the most significant bit of the field, minus 32), in instruction bits 15..11, and lsbminus32
(least significant bit of the field, minus 32), in instruction bits 10..6, as follows:

msbminus32 ← pos+size-1-32
lsbminus32 ← pos-32
msb ← msbminus32 + 32
lsb ← lsbminus32 + 32

For this instruction, the values of pos and size must satisfy all of the following relations:

32 ≤ pos < 64
1 ≤ size ≤ 32
32 < pos+size ≤ 64

Figure 3-8 shows the symbolic operation of the instruction.

Figure 3.8 Operation of the DINSU Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and lsb of
the field (which implies restrictions on pos and size), as follows:

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msbminus32
(pos+size-33)

lsbminus32
(pos-32)

DINSU
000110

6 5 5 5 5 6

63
size

msb-lsb+1
 size-1

 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

63
pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

 63
pos+size

msb+1
pos+size-1

msb
pos
lsb

pos-1
lsb-1 0

GPR rt Final
Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

Doubleword Insert Bit Field Upper IDINSU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 139

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if lsb > msb.

Operation:

lsb ← lsbminus32 + 32
msb ← msbminus32 + 32
if (lsb > msb) then

UNPREDICTABLE
endif
GPR[rt] ← GPR[rt]63..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size ≤ 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

msb lsb pos size Instruction Comment

0 ≤ msb < 32 0 ≤ lsb < 32 0 ≤ pos < 32 1 ≤ size ≤ 32 DINS The field is entirely contained in the
right-most word of the doubleword

32 ≤ msb < 64 0 ≤ lsb < 32 0 ≤ pos < 32 2 ≤ size ≤ 64 DINSM The field straddles the words of the
doubleword

32 ≤ msb < 64 32 ≤ lsb < 64 32 ≤ pos < 64 1 ≤ size ≤ 32 DINSU The field is entirely contained in the
left-most word of the doubleword

Divide Word DIV

140 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DIV rs, rt MIPS32

Purpose: Divide Word

To divide a 32-bit signed integers

Description: (HI, LO) ← GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as signed values.
The 32-bit quotient is sign-extended and placed into special register LO and the 32-bit remainder is sign-extended
and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation is UNPREDICTABLE.

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:
if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then

UNPREDICTABLE
endif
q ← GPR[rs]31..0 div GPR[rt]31..0
LO ← sign_extend(q31..0)
r ← GPR[rs]31..0 mod GPR[rt]31..0
HI ← sign_extend(r31..0)

Exceptions:

None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overflow. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overflow is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code field value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specified signal handler. C does not expect overflow to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

By default, most compilers for the MIPS architecture will emit additional instructions to check for the divide-by-zero
and overflow cases when this instruction is used. In many compilers, the assembler mnemonic “DIV r0, rs, rt” can be
used to prevent these additional test instructions to be emitted.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DIV

011010

6 5 5 10 6

Divide Word IDIV

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 141

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

Floating Point Divide DIV.fmt

142 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DIV.fmt
DIV.S fd, fs, ft MIPS32
DIV.D fd, fs, ft MIPS32

Purpose: Floating Point Divide

To divide FP values

Description: FPR[fd] ← FPR[fs] / FPR[ft]

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRED-
ICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd
DIV

000011

6 5 5 5 5 6

Divide Unsigned Word IDIVU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 143

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DIVU rs, rt MIPS32

Purpose: Divide Unsigned Word

To divide a 32-bit unsigned integers

Description: (HI, LO) ← GPR[rs] / GPR[rt]

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands as unsigned values.
The 32-bit quotient is sign-extended and placed into special register LO and the 32-bit remainder is sign-extended
and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation is UNPREDICTABLE.

If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
LO ← sign_extend(q31..0)
HI ← sign_extend(r31..0)

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DIVU
011011

6 5 5 10 6

Doubleword Move from Coprocessor 0 DMFC0

144 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMFC0 rt, rd MIPS64
DMFC0 rt, rd, sel MIPS64

Purpose: Doubleword Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general purpose register (GPR).

Description: GPR[rt] ← CPR[0,rd,sel]

The contents of the coprocessor 0 register are loaded into GPR rt. Note that not all coprocessor 0 registers support the
sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNPREDICTABLE if coprocessor 0 does not contain a register as specified by rd and sel, or if the
coprocessor 0 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword ← CPR[0,rd,sel]
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0
010000

DMF
00001

rt rd
0

0000 0000
sel

6 5 5 5 8 3

Doubleword Move from Floating Point IDMFC1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 145

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMFC1 rt,fs MIPS64

Purpose: Doubleword Move from Floating Point

To move a doubleword from an FPR to a GPR.

Description: GPR[rt] ← FPR[fs]

The contents of FPR fs are loaded into GPR rt.

Restrictions:

Operation:

datadoubleword ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

Historical Information:

For MIPS III, the contents of GPR rt are undefined for the instruction immediately following DMFC1.

31 26 25 21 20 16 15 11 10 0

COP1
010001

DMF
00001

rt fs
0

000 0000 0000

6 5 5 5 11

Doubleword Move from Coprocessor 2 DMFC2

146 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMFC2 rt, rd MIPS64
DMFC2, rt, rd, sel MIPS64

The syntax shown above is an example using DMFC1 as a model. The specific syntax is implementation dependent.

Purpose: Doubleword Move from Coprocessor 2

To move a doubleword from a coprocessor 2 register to a GPR.

Description: GPR[rt] ← CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field is loaded into GPR rt. The interpretation of the
Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if the coproces-
sor 2 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword ← CP2CPR[Impl]
GPR[rt] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 8 7 0

COP2
010010

DMF
00001

rt Impl

6 5 5 16

Doubleword Move to Coprocessor 0 IDMTC0

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 147

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMTC0 rt, rd MIPS64
DMTC0 rt, rd, sel MIPS64

Purpose: Doubleword Move to Coprocessor 0

To move a doubleword from a GPR to a coprocessor 0 register.

Description: CPR[0,rd,sel] ← GPR[rt]

The contents of GPR rt are loaded into the coprocessor 0 register specified in the rd and sel fields. Note that not all
coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNPREDICTABLE if coprocessor 0 does not contain a register as specified by rd and sel, or if the
coprocessor 0 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword ← GPR[rt]
CPR[0,rd,sel] ← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0
010000

DMT
00101

rt rd
0

0000 0000
sel

6 5 5 5 8 3

Doubleword Move to Floating Point DMTC1

148 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMTC1 rt, fs MIPS64

Purpose: Doubleword Move to Floating Point

To copy a doubleword from a GPR to an FPR

Description: FPR[fs] ← GPR[rt]

The doubleword contents of GPR rt are placed into FPR fs.

Restrictions:

Operation:

datadoubleword ← GPR[rt]
StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, datadoubleword)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Historical Information:

For MIPS III, the contents of FPR fs are undefined for the instruction immediately following DMTC1.

31 26 25 21 20 16 15 11 10 0

COP1
010001

DMT
00101

rt fs
0

000 0000 0000

6 5 5 5 11

Doubleword Move to Coprocessor 2 IDMTC2

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 149

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMTC2 rt,rd MIPS64
DMTC2 rt, rd, sel MIPS64

The syntax shown above is an example using DMTC1 as a model. The specific syntax is implementation dependent.

Purpose: Doubleword Move to Coprocessor 2

To move a doubleword from a GPR to a coprocessor 2 register.

Description: CPR[2, rd, sel] ← GPR[rt]

The contents GPR rt are loaded into the coprocessor 2 register denoted by the Impl field. The interpretation of the
Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if the coproces-
sor 2 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword ← GPR[rt]
CP2CPR[Impl]← datadoubleword

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 8 7 0

COP2
010010

DMT
00101

rt Impl

6 5 5 16

Doubleword Multiply DMULT

150 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMULT rs, rt MIPS64

Purpose: Doubleword Multiply

To multiply 64-bit signed integers

Description: (LO, HI) ← GPR[rs] × GPR[rt]

The 64-bit doubleword value in GPR rt is multiplied by the 64-bit value in GPR rs, treating both operands as signed
values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special register LO,
and the high-order 64-bit doubleword is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

Operation:

prod ← GPR[rs] × GPR[rt]
LO ← prod63..0
HI ← prod127..64

Exceptions:

Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and all subsequent lev-
els of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DMULT
011100

6 5 5 10 6

Doubleword Multiply Unsigned IDMULTU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 151

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DMULTU rs, rt MIPS64

Purpose: Doubleword Multiply Unsigned

To multiply 64-bit unsigned integers

Description: (LO, HI) ← GPR[rs] × GPR[rt]

The 64-bit doubleword value in GPR rt is multiplied by the 64-bit value in GPR rs, treating both operands as
unsigned values, to produce a 128-bit result. The low-order 64-bit doubleword of the result is placed into special reg-
ister LO, and the high-order 64-bit doubleword is placed into special register HI. No arithmetic exception occurs
under any circumstances.

Restrictions:

Operation:

prod ← (0||GPR[rs]) × (0||GPR[rt])
LO ← prod63..0
HI ← prod127..64

Exceptions:

Reserved Instruction

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Historical Perspective:

In MIPS III, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of the MFHI or
MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subsequent instruc-
tions that write to them by two or more instructions. This restriction was removed in MIPS IV and all subsequent lev-
els of the architecture.

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
DMULTU

011101

6 5 5 10 6

Doubleword Rotate Right DROTR

152 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DROTR rd, rt, sa MIPS64 Release 2

Purpose: Doubleword Rotate Right

To execute a logical right-rotate of a doubleword by a fixed amount⎯0 to 31 bits

Description: GPR[rd] ← GPR[rt] ↔ (right) sa

The doubleword contents of GPR rt are rotated right; the result is placed in GPR rd. The bit-rotate amount in the
range 0 to 31 is specified by sa.

Restrictions:

Operation:

s ← 0 || sa
GPR[rd] ← GPR[rt]s-1..0 || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0000
R
1

rt rd sa
DSRL
111010

6 4 1 5 5 5 6

Doubleword Rotate Right Plus 32 IDROTR32

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 153

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DROTR32 rd, rt, sa MIPS64 Release 2

Purpose: Doubleword Rotate Right Plus 32

To execute a logical right-rotate of a doubleword by a fixed amount⎯32 to 63 bits

Description: GPR[rd] ← GPR[rt] ↔ (right) (saminus32+32)

The 64-bit doubleword contents of GPR rt are rotated right; the result is placed in GPR rd. The bit-rotate amount in
the range 32 to 63 is specified by saminus32+32.

Restrictions:

Operation:

s ← 1 || sa /* 32+saminus32 */
GPR[rd] ← GPR[rt]s-1..0 || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0000
R
1

rt rd saminus32
DSRL32
111110

6 4 1 5 5 5 6

Doubleword Rotate Right Variable DROTRV

154 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DROTRV rd, rt, rs MIPS64 Release 2

Purpose: Doubleword Rotate Right Variable

To execute a logical right-rotate of a doubleword by a variable number of bits

Description: GPR[rd] ← GPR[rt] ↔ (right) GPR[rs]

The 64-bit doubleword contents of GPR rt are rotated right; the result is placed in GPR rd. The bit-rotate amount in
the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:

s ← GPR[rs]5..0
GPR[rd] ← GPR[rt]s-1..0 || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL
000000

rs rt rd 0000
R
1

DSRLV
010110

6 5 5 5 4 1 6

Doubleword Swap Bytes Within Halfwords IDSBH

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 155

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSBH rd, rt MIPS64 Release 2

Purpose: Doubleword Swap Bytes Within Halfwords

To swap the bytes within each halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SwapBytesWithinHalfwords(GPR[rt])

Within each halfword of GPR rt the bytes are swapped and stored in GPR rd.

Restrictions:

In implementations Release 1 of the architecture, this instruction resulted in a Reserved Instruction Exception.

Operation:

GPR[rd] ← GPR[rt]55.48 || GPR[rt]63..56 || GPR[rt]39..32 || GPR[rt]47..40 ||
GPR[rt]23..16 || GPR[rt]31..24 || GPR[rt]7..0 || GPR[rt]15..8

Exceptions:

Reserved Instruction

Programming Notes:

The DSBH and DSHD instructions can be used to convert doubleword data of one endianness to the other endianness.
For example:

ld t0, 0(a1) /* Read doubleword value */
dsbh t0, t0 /* Convert endiannes of the halfwords */
dshd t0, t0 /* Swap the halfwords within the doublewords */

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
DSBH
00010

DBSHFL
100100

6 5 5 5 5 6

Doubleword Swap Halfwords Within Doublewords DSHD

156 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSHD rd, rt MIPS64 Release 2

Purpose: Doubleword Swap Halfwords Within Doublewords

To swap the halfwords of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SwapHalfwordsWithinDoublewords(GPR[rt])

The halfwords of GPR rt are swapped and stored in GPR rd.

Restrictions:

In implementations of Release 1 of the architecture, this instruction resulted in a Reserved Instruction Exception.

Operation:

GPR[rd] ← GPR[rt]15..0 || GPR[rt]31..16 || GPR[rt]47..32 || GPR[rt]63..48

Exceptions:

Reserved Instruction

Programming Notes:

The DSBH and DSHD instructions can be used to convert doubleword data of one endianness to the other endianness.
For example:

ld t0, 0(a1) /* Read doubleword value */
dsbh t0, t0 /* Convert endiannes of the halfwords */
dshd t0, t0 /* Swap the halfwords within the doublewords */

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
DSHD
00101

DBSHFL
100100

6 5 5 5 5 6

Doubleword Shift Left Logical IDSLL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 157

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSLL rd, rt, sa MIPS64

Purpose: Doubleword Shift Left Logical

To execute a left-shift of a doubleword by a fixed amount—0 to 31 bits

Description: GPR[rd] ← GPR[rt] << sa

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rd. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

s ← 0 || sa
GPR[rd] ← GPR[rt](63–s)..0 || 0

s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

rt rd sa
DSLL
111000

6 5 5 5 5 6

Doubleword Shift Left Logical Plus 32 DSLL32

158 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSLL32 rd, rt, sa MIPS64

Purpose: Doubleword Shift Left Logical Plus 32

To execute a left-shift of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rd] ← GPR[rt] << (sa+32)

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rd. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← GPR[rt](63–s)..0 || 0

s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

rt rd sa
DSLL32
111100

6 5 5 5 5 6

Doubleword Shift Left Logical Variable IDSLLV

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 159

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSLLV rd, rt, rs MIPS64

Purpose: Doubleword Shift Left Logical Variable

To execute a left-shift of a doubleword by a variable number of bits

Description: GPR[rd] ← GPR[rt] << GPR[rs]

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:

s ← GPR[rs]5..0
GPR[rd] ← GPR[rt](63–s)..0 || 0

s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
DSLLV
010100

6 5 5 5 5 6

Doubleword Shift Right Arithmetic DSRA

160 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSRA rd, rt, sa MIPS64

Purpose: Doubleword Shift Right Arithmetic

To execute an arithmetic right-shift of a doubleword by a fixed amount—0 to 31 bits

Description: GPR[rd] ← GPR[rt] >> sa (arithmetic)

The 64-bit doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in GPR rd. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

s ← 0 || sa
GPR[rd] ← (GPR[rt]63)

s || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

rt rd sa
DSRA
111011

6 5 5 5 5 6

Doubleword Shift Right Arithmetic Plus 32 IDSRA32

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 161

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSRA32 rd, rt, sa MIPS64

Purpose: Doubleword Shift Right Arithmetic Plus 32

To execute an arithmetic right-shift of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rd] ← GPR[rt] >> (sa+32) (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed in GPR rd. The bit-shift amount in the range 32 to 63 is specified by sa+32.

Restrictions:

Operation:

s ← 1 || sa /* 32+sa */
GPR[rd] ← (GPR[rt]63)

s || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

rt rd sa
DSRA32
111111

6 5 5 5 5 6

Doubleword Shift Right Arithmetic Variable DSRAV

162 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSRAV rd, rt, rs MIPS64

Purpose: Doubleword Shift Right Arithmetic Variable

To execute an arithmetic right-shift of a doubleword by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> GPR[rs] (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed in GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:

s ← GPR[rs]5..0
GPR[rd] ← (GPR[rt]63)

s || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
DSRAV
010111

6 5 5 5 5 6

Doubleword Shift Right Logical IDSRL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 163

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSRL rd, rt, sa MIPS64

Purpose: Doubleword Shift Right Logical

To execute a logical right-shift of a doubleword by a fixed amount⎯0 to 31 bits

Description: GPR[rd] ← GPR[rt] >> sa (logical)

The doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the result is placed in
GPR rd. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

s ← 0 || sa
GPR[rd] ← 0s || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0000
R
0

rt rd sa
DSRL
111010

6 4 1 5 5 5 6

Doubleword Shift Right Logical Plus 32 DSRL32

164 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSRL32 rd, rt, sa MIPS64

Purpose: Doubleword Shift Right Logical Plus 32

To execute a logical right-shift of a doubleword by a fixed amount⎯32 to 63 bits

Description: GPR[rd] ← GPR[rt] >> (saminus32+32) (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the result is placed
in GPR rd. The bit-shift amount in the range 32 to 63 is specified by saminus32+32.

Restrictions:

Operation:

s ← 1 || sa /* 32+saminus32 */
GPR[rd] ← 0s || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0000
R
0

rt rd saminus32
DSRL32
111110

6 1 1 5 5 5 6

Doubleword Shift Right Logical Variable IDSRLV

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 165

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSRLV rd, rt, rs MIPS64

Purpose: Doubleword Shift Right Logical Variable

To execute a logical right-shift of a doubleword by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> GPR[rs] (logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the result is placed
in GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:

s ← GPR[rs]5..0
GPR[rd] ← 0s || GPR[rt]63..s

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL
000000

rs rt rd 0000
R
0

DSRLV
010110

6 5 5 5 4 1 6

Doubleword Subtract DSUB

166 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSUB rd, rs, rt MIPS64

Purpose: Doubleword Subtract

To subtract 64-bit integers; trap on overflow

Description: GPR[rd] ← GPR[rs] - GPR[rt]

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs to produce a 64-bit result. If the
subtraction results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

Operation:

temp ← (GPR[rs]63||GPR[rs]) – (GPR[rt]63||GPR[rt])
if (temp64 ≠ temp63) then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp63..0
endif

Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DSUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
DSUB
101110

6 5 5 5 5 6

Doubleword Subtract Unsigned IDSUBU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 167

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: DSUBU rd, rs, rt MIPS64

Purpose: Doubleword Subtract Unsigned

To subtract 64-bit integers

Description: GPR[rd] ← GPR[rs] - GPR[rt]

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs and the 64-bit arithmetic result
is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

Operation: 64-bit processors

GPR[rd] ← GPR[rs] – GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
DSUBU
101111

6 5 5 5 5 6

Execution Hazard Barrier EHB

168 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: EHB MIPS32 Release 2

Purpose: Execution Hazard Barrier

To stop instruction execution until all execution hazards have been cleared.

Description:

EHB is the assembly idiom used to denote execution hazard barrier. The actual instruction is interpreted by the hard-
ware as SLL r0, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execution
hazards have been cleared. Other than those that might be created as a consequence of setting StatusCU0, there are no
execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by previ-
ous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is executed in
the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards—such hazards are cleared
by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:

None

Operation:

ClearExecutionHazards()

Exceptions:

None

Programming Notes:

In MIPS64 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB alters the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have already cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

0
00000

0
00000

3
00011

SLL
000000

6 5 5 5 5 6

Enable Interrupts IEI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 169

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: EI MIPS32 Release 2
EI rt MIPS32 Release 2

Purpose: Enable Interrupts

To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rt] ← Status; StatusIE ← 1

The current value of the Status register is sign-extended and loaded into general register rt. The Interrupt Enable (IE)
bit in the Status register is then set.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general interrupt enable/disable operation, with the sc field as a variable. The
individual instructions DI and EI have a specific value for the sc field.

data ← Status
GPR[rt] ← sign_extend(data)
StatusIE ← 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI
instruction can not be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

31 26 25 21 20 16 15 11 10 6 5 4 3 2 0

COP0
0100 00

MFMC0
01 011

rt
12

0110 0
0

000 00
sc
1

0
0 0

0
000

6 5 5 5 5 1 2 3

Exception Return ERET

170 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ERET MIPS32

Purpose: Exception Return

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS in a Release 2
implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch or jump instruc-
tion.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlCSS from SRSCtlPSS if StatusBEV = 1, or if StatusERL =
1 because any exception that sets StatusERL to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlCSS in
SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an ERET that may be subsequently
executed.

Operation:

if StatusERL = 1 then
temp ← ErrorEPC
StatusERL ← 0

else
temp ← EPC
StatusEXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) then

SRSCtlCSS ← SRSCtlPSS
endif

endif
if IsMIPS16Implemented() then

PC ← temp63..1 || 0
ISAMode ← temp0

else
PC ← temp

endif
LLbit ← 0
ClearHazards()

Exceptions:
Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

ERET
011000

6 1 19 6

Extract Bit Field IEXT

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 171

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: EXT rt, rs, pos, size MIPS32 Release 2

Purpose: Extract Bit Field

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ← ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and lsb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ← size-1
lsb ← pos

The values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-9 shows the symbolic operation of the instruction.

Figure 3.9 Operation of the EXT Instruction

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if lsb+msbd > 31.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if ((lsb + msbd) > 31) or (NotWordValue(GPR[rs])) then

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msbd

(size-1)
lsb

(pos)
EXT

000000

6 5 5 5 5 6

31
pos+size

lsb+msbd+1
 pos+size-1
 lsb+msbd

pos
lsb

 pos-1
 lsb-1 0

GPR rs
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(lsb+msbd+1)

size
msbd+1

pos
lsb

31
size

msbd+1
size-1
 msbd 0

GPR rt Final
Value

0 MNOP

32-size
32-(msbd+1)

size
msbd+1

Extract Bit Field EXT

172 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

UNPREDICTABLE
endif
temp ← sign_extend(032-(msbd+1) || GPR[rs]msbd+lsb..lsb)
GPR[rt] ← temp

Exceptions:

Reserved Instruction

Floating Point Floor Convert to Long Fixed Point IFLOOR.L.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 173

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: FLOOR.L.fmt
FLOOR.L.S fd, fs MIPS64, MIPS32 Release 2
FLOOR.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward -∞
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for long fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

FLOOR.L
001011

6 5 5 5 5 6

Floating Point Floor Convert to Word Fixed Point FLOOR.W.fmt

174 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: FLOOR.W.fmt
FLOOR.W.S fd, fs MIPS32
FLOOR.W.D fd, fs MIPS32

Purpose: Floating Point Floor Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward –∞
(rounding mode 3). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs—fs for type fmt and fd for word fixed point—if they are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

FLOOR.W
001111

6 5 5 5 5 6

Insert Bit Field IINS

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 175

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: INS rt, rs, pos, size MIPS32 Release 2

Purpose: Insert Bit Field

To merge a right-justified bit field from GPR rs into a specified field in GPR rt.

Description: GPR[rt] ← InsertField(GPR[rt], GPR[rs], msb, lsb)

The right-most size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and lsb (least significant bit of the
field), in instruction bits 10..6, as follows:

msb ← pos+size-1
lsb ← pos

The values of pos and size must satisfy all of the following relations:

0 ≤ pos < 32
0 < size ≤ 32
0 < pos+size ≤ 32

Figure 3-10 shows the symbolic operation of the instruction.

Figure 3.10 Operation of the INS Instruction

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
msb

(pos+size-1)
lsb

(pos)
INS

000100

6 5 5 5 5 6

31
size

msb-lsb+1
 size-1

 msb-lsb 0

GPR rs ABCD EFGH

32-size
32-(msb-lsb+1)

size
msb-lsb+1

31
pos+size
msb+1

 pos+size-1
 msb

pos
lsb

 pos-1
 lsb-1 0

GPR rt
Initial Value

IJKL MNOP QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

 31
pos+size

msb+1
pos+size-1

msb
pos
lsb

pos-1
lsb-1 0

GPR rt Final
Value

IJKL EFGH QRST

32-(pos+size)
32-(msb+1)

size
msb-lsb+1

pos
lsb

Insert Bit Field INS

176 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

The operation is UNPREDICTABLE if lsb > msb.

If either GPR rs or GPR rt does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation is UNPREDICTABLE.

Operation:

if (lsb > msb) or (NotWordValue(GPR[rs])) or (NotWordValue(GPR[rt]))) then
UNPREDICTABLE

endif
GPR[rt] ← sign_extend(GPR[rt]31..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0)

Exceptions:

Reserved Instruction

Jump IJ

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 177

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: J target MIPS32

Purpose: Jump

To branch within the current 256 MB-aligned region

Description:

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I:
I+1: PC ← PCGPRLEN-1..28 || instr_index || 0

2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the jump instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

J
000010

instr_index

6 26

Jump and Link JAL

178 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: JAL target MIPS32

Purpose: Jump and Link

To execute a procedure call within the current 256 MB-aligned region

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index field shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address. Execute the instruction that follows the jump, in the branch delay slot, before
executing the jump itself.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: GPR[31] ← PC + 8
I+1: PC ← PCGPRLEN-1..28 || instr_index || 0

2

Exceptions:

None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fit into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definition creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

31 26 25 0

JAL
000011

instr_index

6 26

Jump and Link Register IJALR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 179

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: JALR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose: Jump and Link Register

To execute a procedure call to an instruction address in a register

Description: GPR[rd] ← return_addr, PC ← GPR[rs]

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16e ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself.

For processors that do implement the MIPS16e ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch delay
slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target address
is always zero so that no Address Exceptions occur when bit 0 of the source register is one

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JALR. In Release
2 of the architecture, bit 10 of the hint field is used to encode a hazard barrier. See the JALR.HB instruction descrip-
tion for additional information.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit 0 is zero and bit
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1:if Config1CA = 0 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs
0

00000
rd hint

JALR
001001

6 5 5 5 5 6

Jump and Link Register JALR

180 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Exceptions:

None

Programming Notes:

This is the only branch-and-link instruction that can select a register for the return link; all other link instructions use
GPR 31. The default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

Jump and Link Register with Hazard Barrier IJALR.HB

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 181

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: JALR.HB rs (rd = 31 implied) MIPS32 Release 2
JALR.HB rd, rs MIPS32 Release 2

Purpose: Jump and Link Register with Hazard Barrier

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: GPR[rd] ← return_addr, PC ← GPR[rs], clear execution and instruction
hazards

Place the return address link in GPR rd. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself. Set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the tar-
get address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

JALR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALR.HB instruction jumps. An equivalent bar-
rier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JALR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JALR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

Restrictions:

Register specifiers rs and rd must not be equal, because such an instruction does not have the same effect when reex-
ecuted. The result of executing such an instruction is UNPREDICTABLE. This restriction permits an exception han-
dler to resume execution by re-executing the branch when an exception occurs in the branch delay slot.

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALR.HB, JR.HB, ERET, or
DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JALR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only
hazards created by instructions executed before the JALR.HB are cleared by the JALR.HB.

31 26 25 21 20 16 15 11 10 9 6 5 0

SPECIAL
000000

rs
0

00000
rd 1

Any other
legal hint

value

JALR
001001

6 5 5 5 1 4 6

Jump and Link Register with Hazard Barrier JALR.HB

182 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
GPR[rd] ← PC + 8

I+1:if Config1CA = 0 then
PC ← temp

else
PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif
ClearHazards()

Exceptions:

None

Programming Notes:

JALR and JALR.HB are the only branch-and-link instructions that can select a register for the return link; all other
link instructions use GPR 31. The default register for GPR rd, if omitted in the assembly language instruction, is
GPR 31.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Code used to modify ASID and call a routine with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 * a1 = Address of the routine to call
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jalr.hb a1 /* Call routine, clearing the hazard */
nop

Jump Register IJR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 183

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: JR rs MIPS32

Purpose: Jump Register

To execute a branch to an instruction address in a register

Description: PC ← GPR[rs]

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

For processors that implement the MIPS16e ASE, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one

Restrictions:

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16e
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16e ASE, if bit 0 is zero and bit
1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

In release 1 of the architecture, the only defined hint field value is 0, which sets default handling of JR. In Release 2
of the architecture, bit 10 of the hint field is used to encode an instruction hazard barrier. See the JR.HB instruction
description for additional information.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1:if Config1CA = 0 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:

None

Programming Notes:

Software should use the value 31 for the rs field of the instruction word on return from a JAL, JALR, or BGEZAL,
and should use a value other than 31 for remaining uses of JR.

31 26 25 21 20 11 10 6 5 0

SPECIAL
000000

rs
0

00 0000 0000
hint

JR
001000

6 5 10 5 6

Jump Register with Hazard Barrier JR.HB

184 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: JR.HB rs MIPS32 Release 2

Purpose: Jump Register with Hazard Barrier

To execute a branch to an instruction address in a register and clear all execution and instruction hazards.

Description: PC ← GPR[rs], clear execution and instruction hazards

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the branch delay slot,
before jumping.

JR.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JR.HB instruction jumps. An equivalent barrier
is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0 is
enabled, whereas JR.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

JR.HB uses bit 10 of the instruction (the upper bit of the hint field) to denote the hazard barrier operation.

For processors that implement the MIPS16 ASE, set the ISA Mode bit to the value in GPR rs bit 0. Bit 0 of the target
address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

Restrictions:

The effective target address in GPR rs must be naturally-aligned. For processors that do not implement the MIPS16
ASE, if either of the two least-significant bits are not zero, an Address Error exception occurs when the branch target
is subsequently fetched as an instruction. For processors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1
is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the hazard has been cleared with JALR.HB, JR.HB, ERET, or DERET. Fur-
ther, the operation is UNPREDICTABLE if the mapping of the current instruction stream is modified.

JR.HB does not clear hazards created by any instruction that is executed in the delay slot of the JALR.HB. Only haz-
ards created by instructions executed before the JR.HB are cleared by the JALR.HB.

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:

I: temp ← GPR[rs]
I+1:if Config1CA = 0 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif
ClearHazards()

31 26 25 21 20 11 10 9 6 5 0

SPECIAL
000000

rs
0

00 0000 0000
1

Any other
legal hint

value

JR
001000

6 5 10 1 4 6

Jump Register with Hazard Barrier IJR.HB

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 185

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Exceptions:

None

Programming Notes:

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALR.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
 * Routine called to modify ASID and return with the new
 * mapping established.
 *
 * a0 = New ASID to establish
 */

mfc0 v0, C0_EntryHi /* Read current ASID */
li v1, ~M_EntryHiASID /* Get negative mask for field */
and v0, v0, v1 /* Clear out current ASID value */
or v0, v0, a0 /* OR in new ASID value */
mtc0 v0, C0_EntryHi /* Rewrite EntryHi with new ASID */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Making a write to the instruction stream visible

/*
 * Routine called after new instructions are written to
 * make them visible and return with the hazards cleared.
 */

{Synchronize the caches - see the SYNCI and CACHE instructions}
sync /* Force memory synchronization */
jr.hb ra /* Return, clearing the hazard */
nop

Example: Clearing instruction hazards in-line

la AT, 10f
jr.hb AT /* Jump to next instruction, clearing */
nop /* hazards */

10:

Load Byte LB

186 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LB rt, offset(base) MIPS32

Purpose: Load Byte

To load a byte from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
memdoubleword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← sign_extend(memdoubleword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LB
100000

base rt offset

6 5 5 16

Load Byte Unsigned ILBU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 187

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LBU rt, offset(base) MIPS32

Purpose: Load Byte Unsigned

To load a byte from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
memdoubleword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor BigEndianCPU3

GPR[rt] ← zero_extend(memdoubleword7+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LBU
100100

base rt offset

6 5 5 16

Load Doubleword LD

188 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LD rt, offset(base) MIPS64

Purpose: Load Doubleword

To load a doubleword from memory

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdoubleword

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

31 26 25 21 20 16 15 0

LD
110111

base rt offset

6 5 5 16

Load Doubleword to Floating Point ILDC1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 189

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LDC1 ft, offset(base) MIPS32

Purpose: Load Doubleword to Floating Point

To load a doubleword from memory to an FPR

Description: FPR[ft] ← memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC1
110101

base ft offset

6 5 5 16

Load Doubleword to Coprocessor 2 LDC2

190 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LDC2 rt, offset(base) MIPS32

Purpose: Load Doubleword to Coprocessor 2

To load a doubleword from memory to a Coprocessor 2 register

Description: CPR[2,rt,0] ← memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 16-bit signed offset is added to the contents of GPR base to form the
effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then SignalException(AddressError) endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] ← memdoubleword

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LDC2
110110

base rt offset

6 5 5 16

Load Doubleword Left ILDL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 191

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LDL rt, offset(base) MIPS64

Purpose: Load Doubleword Left

To load the most-significant part of a doubleword from an unaligned memory address

Description: GPR[rt] ← GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 8 consecutive bytes forming a doubleword (DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the most-significant 1 to 8 bytes, is in the aligned doubleword containing EffAddr. This part of DW is
loaded appropriately into the most-significant (left) part of GPR rt, leaving the remainder of GPR rt unchanged.

Figure 3.11 Unaligned Doubleword Load Using LDL and LDR

Figure 3-11 illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an unaligned
doubleword starting at location 2. A part of DW, 6 bytes, is located in the aligned doubleword starting with the most-
significant byte at 2. LDL first loads these 6 bytes into the left part of the destination register and leaves the remainder
of the destination unchanged. The complementary LDR next loads the remainder of the unaligned doubleword.

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned doubleword—the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of the processor
(big- or little-endian). Figure 3-12 shows the bytes loaded for every combination of offset and byte ordering.

31 26 25 21 20 16 15 0

LDL
011010

base rt offset

6 5 5 16

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address
 most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

a b c d e f g h GPR 24 Initial contents

2 3 4 5 6 7 g h After executing LDL $24,2($0)

2 3 4 5 6 7 8 9 Then after LDR $24,9($0)

Load Doubleword Left LDL

192 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.12 Bytes Loaded by LDL Instruction

Restrictions:

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..3 || 0
3

endif
byte ← vAddr2..0 xor BigEndianCPU

3

memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← memdoublworde7+8*byte..0 || GPR[rt]55–8*byte..0

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

Memory contents and byte offsets (vAddr2..0) Initial contents of
Destination Registermost — significance — least

0 1 2 3 4 5 6 7 ←big-endian most — significance — least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ←little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

I J K L M N O P 0 P b c d e f g h

J K L M N O P h 1 O P c d e f g h

K L M N O P g h 2 N O P d e f g h

L M N O P f g h 3 M N O P e f g h

M N O P e f g h 4 L M N O P f g h

N O P d e f g h 5 K L M N O P g h

O P c d e f g h 6 J K L M N O P h

P b c d e f g h 7 I J K L M N O P

Load Doubleword Right ILDR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 193

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LDR rt, offset(base) MIPS64

Purpose: Load Doubleword Right

To load the least-significant part of a doubleword from an unaligned memory address

Description: GPR[rt] ← GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 8 consecutive bytes forming a doubleword (DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the least-significant 1 to 8 bytes, is in the aligned doubleword containing EffAddr. This part of DW is
loaded appropriately into the least-significant (right) part of GPR rt leaving the remainder of GPR rt unchanged.

Figure 3-13 illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an unaligned
doubleword starting at location 2. Two bytes of the DW are located in the aligned doubleword containing the least-sig-
nificant byte at 9. LDR first loads these 2 bytes into the right part of the destination register, and leaves the remainder
of the destination unchanged. The complementary LDL next loads the remainder of the unaligned doubleword.

Figure 3.13 Unaligned Doubleword Load Using LDR and LDL

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned doubleword—the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of the processor
(big- or little-endian).

Figure 3-14 shows the bytes loaded for every combination of offset and byte ordering.

31 26 25 21 20 16 15 0

LDR
011011

base rt offset

6 5 5 16

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b c d e f g h GPR 24 initial contents

2 3 4 5 6 7 g h GPR 24 after LDL $24,2($0)

2 3 4 5 6 7 8 9 GPR 24 after LDR $24,9($0)

Load Doubleword Right LDR

194 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.14 Bytes Loaded by LDR Instruction

Restrictions:

Operation: 64-bit processors

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
if BigEndianMem = 1 then

pAddr ← pAddrPSIZE-1..3 || 03

endif
byte ← vAddr2..0 xor BigEndianCPU

3

memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
GPR[rt] ← GPR[rt]63..64-8*byte || memdoubleword63..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

Memory contents and byte offsets (vAddr2..0) Initial contents of
Destination Registermost — significance — least

0 1 2 3 4 5 6 7 ←big-endian most — significance — least

I J K L M N O P a b c d e f g h

7 6 5 4 3 2 1 0 ←little-endian offset

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

a b c d e f g I 0 I J K L M N O P

a b c d e f I J 1 a I J K L M N O

a b c d e I J K 2 a b I J K L M N

a b c d I J K L 3 a b c I J K L M

a b c I J K L M 4 a b c d I J K L

a b I J K L M N 5 a b c d e I J K

a I J K L M N O 6 a b c d e f I J

I J K L M N O P 7 a b c d e f g I

Load Doubleword Indexed to Floating Point ILDXC1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 195

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LDXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose: Load Doubleword Indexed to Floating Point

To load a doubleword from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ← memory[GPR[base] + GPR[index]]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR fd. The contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR(fd, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

base index
0

00000
fd

LDXC1
000001

6 5 5 5 5 6

Load Halfword LH

196 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LH rt, offset(base) MIPS32

Purpose: Load Halfword

To load a halfword from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor (ReverseEndian

2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU2 || 0)
GPR[rt] ← sign_extend(memdoubleword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LH
100001

base rt offset

6 5 5 16

Load Halfword Unsigned ILHU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 197

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LHU rt, offset(base) MIPS32

Purpose: Load Halfword Unsigned

To load a halfword from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..3 || (pAddr2..0 xor (ReverseEndian

2 || 0))
memdoubleword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU

2 || 0)
GPR[rt] ← zero_extend(memdoubleword15+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Watch

31 26 25 21 20 16 15 0

LHU
100101

base rt offset

6 5 5 16

Load Linked Word LL

198 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LL rt, offset(base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length, and written into GPR rt. The 16-bit signed offset is added to the contents of
GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[rt] ← sign_extend(memdoubleword31+8*byte..8*byte)
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

31 26 25 21 20 16 15 0

LL
110000

base rt offset

6 5 5 16

Load Linked Word ILL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 199

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Load Linked Doubleword LLD

200 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LLD rt, offset(base) MIPS64

Purpose: Load Linked Doubleword

To load a doubleword from memory for an atomic read-modify-write

Description: GPR[rt] ← memory[GPR[base] + offset]

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed into GPR rt. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLD is executed it starts the active RMW sequence and replaces any other sequence that was active. The
RMW sequence is completed by a subsequent SCD instruction that either completes the RMW sequence atomically
and succeeds, or does not complete and fails.

Executing LLD on one processor does not cause an action that, by itself, would cause an SCD for the same block to
fail on another processor.

An execution of LLD does not have to be followed by execution of SCD; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCD instruction for the formal definition.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← memdoubleword
LLbit ← 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

31 26 25 21 20 16 15 0

LLD
110100

base rt offset

6 5 5 16

Load Upper Immediate ILUI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 201

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LUI rt, immediate MIPS32

Purpose: Load Upper Immediate

To load a constant into the upper half of a word

Description: GPR[rt] ← immediate || 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is sign-
extended and placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← sign_extend(immediate || 016)

Exceptions:

None

31 26 25 21 20 16 15 0

LUI
001111

0
00000

rt immediate

6 5 5 16

Load Doubleword Indexed Unaligned to Floating Point LUXC1

202 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LUXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose: Load Doubleword Indexed Unaligned to Floating Point

To load a doubleword from memory to an FPR (GPR+GPR addressing), ignoring alignment

Description: FPR[fd] ← memory[(GPR[base] + GPR[index])PSIZE-1..3]

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched and
placed into the low word of FPR fd. The contents of GPR index and GPR base are added to form the effective address.
The effective address is doubleword-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index])63..3 || 0
3

(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR(ft, UNINTERPRETED_DOUBLEWORD, memdoubleword)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

base index
0

00000
fd

LUXC1
000101

6 5 5 5 5 6

Load Word ILW

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 203

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LW rt, offset(base) MIPS32

Purpose: Load Word

To load a word from memory as a signed value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[rt] ← sign_extend(memdoubleword31+8*byte..8*byte)

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

LW
100011

base rt offset

6 5 5 16

Load Word to Floating Point LWC1

204 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LWC1 ft, offset(base) MIPS32

Purpose: Load Word to Floating Point

To load a word from memory to an FPR

Description: FPR[ft] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR fs become UNDEFINED. The 16-bit
signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr2..0 xor (BigEndianCPU || 0

2)
StoreFPR(ft, UNINTERPRETED_WORD,

memdoubleword31+8*bytesel..8*bytesel)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC1
110001

base rt offset

6 5 5 16

Load Word to Coprocessor 2 ILWC2

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 205

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LWC2 rt, offset(base) MIPS32

Purpose: Load Word to Coprocessor 2

To load a word from memory to a COP2 register

Description: CPR[2,rt,0] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr12..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword ← LoadMemory(CCA, DOUBLEWORD, pAddr, vAddr, DATA)
bytesel ← vAddr2..0 xor (BigEndianCPU || 0

2)
CPR[2,rt,0] ← sign_extend(memdoubleword31+8*bytesel..8*bytesel)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 0

LWC2
110010

base rt offset

6 5 5 16

Load Word Left LWL

206 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LWL rt, offset(base) MIPS32

Purpose: Load Word Left

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: GPR[rt] ← GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

The most-significant 1 to 4 bytes of W is in the aligned word containing the EffAddr. This part of W is loaded into the
most-significant (left) part of the word in GPR rt. The remaining least-significant part of the word in GPR rt is
unchanged.

For 64-bit GPR rt registers, the destination word is the low-order word of the register. The loaded value is treated as a
signed value; the word sign bit (bit 31) is always loaded from memory and the new sign bit value is copied into bits
63..32.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word

Figure 3.15 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the processor
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

31 26 25 21 20 16 15 0

LWL
100010

base rt offset

6 5 5 16

Word at byte 2 in big-endian memory; each memory byte contains its own address
 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

a b c d e f g h GPR 24 initial contents

sign bit (31) extend 2 3 g h After executing LWL $24,2($0)

sign bit (31) extend 2 3 4 5 Then after LWR $24,5($0)

Load Word Left ILWL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 207

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.16 Bytes Loaded by LWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..3 || 03

endif
byte ← 0 || (vAddr1..0 xor BigEndianCPU

2)
word ← vAddr2 xor BigEndianCPU
memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memdoubleword31+32*word-8*byte..32*word || GPR[rt]23-8*byte..0
GPR[rt] ← (temp31)

32 || temp

Exceptions:

None

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same
destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruction. All
such restrictions were removed from the architecture in MIPS II.

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ←little-endian most — significance — least

most least

— significance —

Destination register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

sign bit (31) extended I J K L 0 sign bit (31) extended L f g h

sign bit (31) extended J K L h 1 sign bit (31) extended K L g h

sign bit (31) extended K L g h 2 sign bit (31) extended J K L h

sign bit (31) extended L f g h 3 sign bit (31) extended I J K L

The word sign (31) is always loaded and the value is copied into bits 63..32.

Load Word Right LWR

208 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LWR rt, offset(base) MIPS32

Purpose: Load Word Right

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: GPR[rt] ← GPR[rt] MERGE memory[GPR[base] + offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing EffAddr. This part of W is loaded into
the least-significant (right) part of the word in GPR rt. The remaining most-significant part of the word in GPR rt is
unchanged.

If GPR rt is a 64-bit register, the destination word is the low-order word of the register. The loaded value is treated as
a signed value; if the word sign bit (bit 31) is loaded (that is, when all 4 bytes are loaded), then the new sign bit value
is copied into bits 63..32. If bit 31 is not loaded, the value of bits 63..32 is implementation dependent; the value is
either unchanged or a copy of the current value of bit 31.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5. First, LWR loads these 2 bytes into the right part of the destination register.
Next, the complementary LWL loads the remainder of the unaligned word.

Figure 3.17 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr1..0), and the current byte-ordering mode of the processor
(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

31 26 25 21 20 16 15 0

LWR
100110

base rt offset

6 5 5 16

Word at byte 2 in big-endian memory; each memory byte contains its own address
 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

a b c d e f g h GPR 24 initial contents

no cng or sign bit (31)
extend e f 4 5

After executing LWR $24,5($0)

sign bit (31) extend 2 3 4 5 Then after LWL $24,2($0)

Load Word Right ILWR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 209

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.18 Bytes Loaded by LWR Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..3 || 03

endif
byte ← vAddr1..0 xor BigEndianCPU

2

word ← vAddr2 xor BigEndianCPU
memdoubleword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← GPR[rt]31..32-8*byte || memdoubleword31+32*word..32*word+8*byte
if byte = 4 then

utemp ← (temp31)
32 /* loaded bit 31, must sign extend */

else
/* one of the following two behaviors: */

utemp ← GPR[rt]63..32 /* leave what was there alone */
utemp ← (GPR[rt]31)

32 /* sign-extend bit 31 */
endif
GPR[rt] ← utemp || temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the same
destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruction. All

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian

I J K L offset (vAddr1..0) a b c d e f g h

3 2 1 0 ←little-endian most — significance — least

most least

— significance —

Destination 64-bit register contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr1..0 Little-endian byte ordering

no cng or sign extend e f g I 0 sign bit (31) extended I J K L

no cng or sign extend e f I J 1 no cng or sign extend e I J K

no cng or sign extend e I J K 2 no cng or sign extend e f I J

sign bit (31) extended I J K L 3 no cng or sign extend e f g I

The word sign (31) is always loaded and the value is copied into bits 63..32.

Load Word Right LWR

210 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

such restrictions were removed from the architecture in MIPS II.

Load Word Unsigned ILWU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 211

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LWU rt, offset(base) MIPS64

Purpose: Load Word Unsigned

To load a word from memory as an unsigned value

Description: GPR[rt] ← memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, zero-
extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ← vAddr2..0 xor (BigEndianCPU || 0

2)
GPR[rt] ← 032 || memdoubleword31+8*byte..8*byte

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

31 26 25 21 20 16 15 0

LWU
100111

base rt offset

6 5 5 16

Load Word Indexed to Floating Point LWXC1

212 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: LWXC1 fd, index(base) MIPS64
MIPS32 Release 2

Purpose: Load Word Indexed to Floating Point

To load a word from memory to an FPR (GPR+GPR addressing)

Description: FPR[fd] ← memory[GPR[base] + GPR[index]]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR fd. If FPRs are 64 bits wide, bits 63..32 of FPR fs become UNDEFINED. The con-
tents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
memdoubleword ← LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
bytesel ← vAddr2..0 xor (BigEndianCPU || 0

2)
StoreFPR(fd, UNINTERPRETED_WORD,

memdoubleword31+8*bytesel..8*bytesel)

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

base index
0

00000
fd

LWXC1
000000

6 5 5 5 5 6

Multiply and Add Word to Hi,Lo IMADD

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 213

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MADD rs, rt MIPS32

Purpose: Multiply and Add Word to Hi,Lo

To multiply two words and add the result to Hi, Lo

Description: (HI,LO) ← (HI,LO) + (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI31..0 and LO31..0. The
most significant 32 bits of the result are sign-extended and written into HI and the least signficant 32 bits are sign-
extended and written into LO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI31..0 || LO31..0) + (GPR[rs]31..0 × GPR[rt]31..0)
HI ← sign_extend(temp63..32)
LO ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt
0

0000
0

00000
MADD
000000

6 5 5 5 5 6

Floating Point Multiply Add MADD.fmt

214 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MADD.fmt
MADD.S fd, fr, fs, ft MIPS64, MIPS32 Release 2
MADD.D fd, fr, fs, ft MIPS64, MIPS32 Release 2
MADD.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Multiply Add

To perform a combined multiply-then-add of FP values

Description: FPR[fd] ← (FPR[fs] × FPR[ft]) + FPR[fr]

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is added to the product. The result
sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, and placed into FPR
fd. The operands and result are values in format fmt. The results and flags are as if separate floating-point multiply
and add instructions were executed.

MADD.PS multiplies then adds the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MADD.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) +fmt vfr)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X
010011

fr ft fs fd
MADD

100
fmt

6 5 5 5 5 3 3

Multiply and Add Unsigned Word to Hi,Lo IMADDU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 215

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MADDU rs, rt MIPS32

Purpose: Multiply and Add Unsigned Word to Hi,Lo

To multiply two unsigned words and add the result to HI, LO.

Description: (HI,LO) ← (HI,LO) + (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values of HI31..0 and LO31..0. The
most significant 32 bits of the result are sign-extended and written into HI and the least signficant 32 bits are sign-
extended and written into LO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI31..0 || LO31..0) + ((032 || GPR[rs]31..0) × (032 || GPR[rt]31..0))
HI ← sign_extend(temp63..32)
LO ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt
0

00000
0

00000
MADDU
000001

6 5 5 5 5 6

Move from Coprocessor 0 MFC0

216 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MFC0 rt, rd MIPS32
MFC0 rt, rd, sel MIPS32

Purpose: Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[rt] ← CPR[0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are sign-extended and loaded
into general register rt. Note that not all coprocessor 0 registers support the sel field. In those instances, the sel field
must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and sel.

Operation:

data ← CPR[0,rd,sel]31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0
010000

MF
00000

rt rd
0

00000000
sel

6 5 5 5 8 3

Move Word From Floating Point IMFC1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 217

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MFC1 rt, fs MIPS32

Purpose: Move Word From Floating Point

To copy a word from an FPU (CP1) general register to a GPR

Description: GPR[rt] ← FPR[fs]

The contents of FPR fs are sign-extended and loaded into general register rt.

Restrictions:

Operation:

data ← ValueFPR(fs, UNINTERPRETED_WORD)31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS II, and MIPS III the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFC1.

31 26 25 21 20 16 15 11 10 0

COP1
010001

MF
00000

rt fs
0

000 0000 0000

6 5 5 5 11

Move Word From Coprocessor 2 MFC2

218 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MFC2 rt, rd MIPS32
MFC2, rt, rd, sel MIPS32

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy a word from a COP2 general register to a GPR

Description: GPR[rt] ← CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are sign-extended and placed into general register
rt. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ← CP2CPR[Impl]31..0
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

31 26 25 21 20 16 15 11 10 8 7 0

COP2
010010

MF
00000

rt Impl

6 5 5

Move Word From High Half of Floating Point Register IMFHC1

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 219

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MFHC1 rt, fs MIPS32 Release 2

Purpose: Move Word From High Half of Floating Point Register

To copy a word from the high half of an FPU (CP1) general register to a GPR

Description: GPR[rt] ← sign_extend(FPR[fs]63..32)

The contents of the high word of FPR fs are sign-extended and loaded into general register rt. This instruction is pri-
marily intended to support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined
for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:

data ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)63..32
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP1
010001

MFH
00011

rt fs
0

000 0000 0000

6 5 5 5 11

Move Word From High Half of Coprocessor 2 Register MFHC2

220 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MFHC2 rt, rd MIPS32 Release 2
MFHC2, rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register

To copy a word from the high half of a COP2 general register to a GPR

Description: GPR[rt] ← sign_extend(CP2CPR[Impl]63..32)

The contents of the high word of the coprocessor 2 register denoted by the Impl field are sign-extended and placed
into GPR rt. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not speci-
fied by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← CP2CPR[Impl]63..32
GPR[rt] ← sign_extend(data)

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP2
010010

MFH
00011

rt Impl

6 5 5 16

Move From HI Register IMFHI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 221

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MFHI rd MIPS32

Purpose: Move From HI Register

To copy the special purpose HI register to a GPR

Description: GPR[rd] ← HI

The contents of special register HI are loaded into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← HI

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not modify the HI register. If
this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS IV
and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000

rd
0

00000
MFHI
010000

6 10 5 5 6

Move From LO Register MFLO

222 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MFLO rd MIPS32

Purpose: Move From LO Register

To copy the special purpose LO register to a GPR

Description: GPR[rd] ← LO

The contents of special register LO are loaded into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← LO

Exceptions:

None

Historical Information:

In the MIPS I, II, and III architectures, the two instructions which follow the MFHI must not modify the HI register. If
this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS IV
and MIPS32, and all subsequent levels of the architecture.

31 26 25 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000

rd
0

00000
MFLO
010010

6 10 5 5 6

Floating Point Move IMOV.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 223

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOV.fmt
MOV.S fd, fs MIPS32
MOV.D fd, fs MIPS32
MOV.PS fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Move

To move an FP value between FPRs

Description: FPR[fd] ← FPR[fs]

The value in FPR fs is placed into FPR fd. The source and destination are values in format fmt. In paired-single for-
mat, both the halves of the pair are copied to fd.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOV.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

MOV
000110

6 5 5 5 5 6

Move Conditional on Floating Point False MOVF

224 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVF rd, rs, cc MIPS32

Purpose: Move Conditional on Floating Point False

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 0 then GPR[rd] ← GPR[rs]

If the floating point condition code specified by CC is zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

Operation:

if FPConditionCode(cc) = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL
000000

rs cc
0
0

tf
0

rd
0

00000
MOVCI
000001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point False IMOVF.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 225

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVF.fmt
MOVF.S fd, fs, cc MIPS32
MOVF.D fd, fs, cc MIPS32
MOVF.PS fd, fs, cc MIPS64

MIPS32 Release 2

Purpose: Floating Point Move Conditional on Floating Point False

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 0 then FPR[fd] ← FPR[fs]

If the floating point condition code specified by CC is zero, then the value in FPR fs is placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not zero, then FPR fs is not copied and FPR fd retains its previous value in format fmt. If fd did
not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes UNPREDICTABLE.

MOVF.PS conditionally merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is zero,
and independently merges the upper half of FPR fs into the upper half of FPR fd if condition code CC+1 is zero. The
CC field must be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDITABLE and the value of
the operand FPR becomes UNPREDICTABLE.

The result of MOVF.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if fmt ≠ PS
if FPConditionCode(cc) = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

else
mask ← 0
if FPConditionCode(cc+0) = 0 then mask ← mask or 0xF0 endif
if FPConditionCode(cc+1) = 0 then mask ← mask or 0x0F endif
StoreFPR(fd, PS, ByteMerge(mask, fd, fs))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1
010001

fmt cc
0
0

tf
0

fs fd
MOVCF
010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point False MOVF.fmt

226 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Floating Point Exceptions:

Unimplemented Operation

Move Conditional on Not Zero IMOVN

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 227

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVN rd, rs, rt MIPS32

Purpose: Move Conditional on Not Zero

To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] ≠ 0 then GPR[rd] ← GPR[rs]

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] ≠ 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
MOVN
001011

6 5 5 5 5 6

Floating Point Move Conditional on Not Zero MOVN.fmt

228 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVN.fmt
MOVN.S fd, fs, rt MIPS32
MOVN.D fd, fs, rt MIPS32
MOVN.PS fd, fs, rt MIPS64, MIPS32 Release 2

Purpose: Floating Point Move Conditional on Not Zero

To test a GPR then conditionally move an FP value

Description: if GPR[rt] ≠ 0 then FPR[fd] ← FPR[fs]

If the value in GPR rt is not equal to zero, then the value in FPR fs is placed in FPR fd. The source and destination are
values in format fmt.

If GPR rt contains zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not
contain a value either in format fmt or previously unused data from a load or move-to operation that could be inter-
preted in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOVN.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rt] ≠ 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt rt fs fd
MOVN
010011

6 5 5 5 5 6

Move Conditional on Floating Point True IMOVT

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 229

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVT rd, rs, cc MIPS32

Purpose: Move Conditional on Floating Point True

To test an FP condition code then conditionally move a GPR

Description: if FPConditionCode(cc) = 1 then GPR[rd] ← GPR[rs]

If the floating point condition code specified by CC is one, then the contents of GPR rs are placed into GPR rd.

Restrictions:

Operation:

if FPConditionCode(cc) = 1 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

Reserved Instruction, Coprocessor Unusable

31 26 25 21 20 18 17 16 15 11 10 6 5 0

SPECIAL
000000

rs cc
0
0

tf
1

rd
0

00000
MOVCI
000001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point True MOVT.fmt

230 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVT.fmt
MOVT.S fd, fs, cc MIPS32
MOVT.D fd, fs, cc MIPS32
MOVT.PS fd, fs, cc MIPS64, MIPS32 Release 2

Purpose: Floating Point Move Conditional on Floating Point True

To test an FP condition code then conditionally move an FP value

Description: if FPConditionCode(cc) = 1 then FPR[fd] ← FPR[fs]

If the floating point condition code specified by CC is one, then the value in FPR fs is placed into FPR fd. The source
and destination are values in format fmt.

If the condition code is not one, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd
did not contain a value either in format fmt or previously unused data from a load or move-to operation that could be
interpreted in format fmt, then the value of fd becomes undefined.

MOVT.PS conditionally merges the lower half of FPR fs into the lower half of FPR fd if condition code CC is one,
and independently merges the upper half of FPR fs into the upper half of FPR fd if condition code CC+1 is one. The
CC field should be even; if it is odd, the result of this operation is UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

The result of MOVT.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if fmt ≠ PS
if FPConditionCode(cc) = 0 then

StoreFPR(fd, fmt, ValueFPR(fs, fmt))
else

StoreFPR(fd, fmt, ValueFPR(fd, fmt))
endif

else
mask ← 0
if FPConditionCode(cc+0) = 0 then mask ← mask or 0xF0 endif
if FPConditionCode(cc+1) = 0 then mask ← mask or 0x0F endif
StoreFPR(fd, PS, ByteMerge(mask, fd, fs))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 18 17 16 15 11 10 6 5 0

COP1
010001

fmt cc
0
0

tf
1

fs fd
MOVCF
010001

6 5 3 1 1 5 5 6

Floating Point Move Conditional on Floating Point True IMOVT.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 231

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Floating Point Exceptions:

Unimplemented Operation

Move Conditional on Zero MOVZ

232 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVZ rd, rs, rt MIPS32

Purpose: Move Conditional on Zero

To conditionally move a GPR after testing a GPR value

Description: if GPR[rt] = 0 then GPR[rd] ← GPR[rs]

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:

if GPR[rt] = 0 then
GPR[rd] ← GPR[rs]

endif

Exceptions:

None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
MOVZ
001010

6 5 5 5 5 6

Floating Point Move Conditional on Zero IMOVZ.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 233

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MOVZ.fmt
MOVZ.S fd, fs, rt MIPS32
MOVZ.D fd, fs, rt MIPS32
MOVZ.PS fd, fs, rt MIPS64, MIPS32 Release 2

Purpose: Floating Point Move Conditional on Zero

To test a GPR then conditionally move an FP value

Description: if GPR[rt] = 0 then FPR[fd] ← FPR[fs]

If the value in GPR rt is equal to zero then the value in FPR fs is placed in FPR fd. The source and destination are val-
ues in format fmt.

If GPR rt is not zero, then FPR fs is not copied and FPR fd contains its previous value in format fmt. If fd did not con-
tain a value either in format fmt or previously unused data from a load or move-to operation that could be interpreted
in format fmt, then the value of fd becomes UNPREDICTABLE.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of MOVZ.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

if GPR[rt] = 0 then
StoreFPR(fd, fmt, ValueFPR(fs, fmt))

else
StoreFPR(fd, fmt, ValueFPR(fd, fmt))

endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt rt fs fd
MOVZ
010010

6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUB

234 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MSUB rs, rt MIPS32

Purpose: Multiply and Subtract Word to Hi,Lo

To multiply two words and subtract the result from HI, LO

Description: (HI,LO) ← (HI,LO) - (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI31..0 and LO31..0. The
most significant 32 bits of the result are sign-extended and written into HI and the least signficant 32 bits are sign-
extended and written into LO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI31..0 || LO31..0) - (GPR[rs]31..0 × GPR[rt]31..0)
HI ← sign_extend(temp63..32)
LO ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt
0

00000
0

00000
MSUB
000100

6 5 5 5 5 6

Floating Point Multiply Subtract IMSUB.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 235

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MSUB.fmt
MSUB.S fd, fr, fs, ft MIPS64, MIPS32 Release 2
MSUB.D fd, fr, fs, ft MIPS64, MIPS32 Release 2
MSUB.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Multiply Subtract

To perform a combined multiply-then-subtract of FP values

Description: FPR[fd] ← (FPR[fs] × FPR[ft]) − FPR[fr]

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is subtracted from the product. The
subtraction result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, and
placed into FPR fd. The operands and result are values in format fmt. The results and flags are as if separate floatiing-
point multiply and subtract instructions were executed.

MSUB.PS multiplies then subtracts the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MSUB.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, (vfs ×fmt vft) −fmt vfr))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X
010011

fr ft fs fd
MSUB

101
fmt

6 5 5 5 5 3 3

Multiply and Subtract Word to Hi,Lo MSUBU

236 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MSUBU rs, rt MIPS32

Purpose: Multiply and Subtract Word to Hi,Lo

To multiply two words and subtract the result from HI, LO

Description: (HI,LO) ← (HI,LO) − (GPR[rs] × GPR[rt])

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both operands as unsigned
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values of HI31..0 and
LO31..0. The most significant 32 bits of the result are sign-extended and written into HI and the least signficant 32 bits
are sign-extended and written into LO. No arithmetic exception occurs under any circumstances.

Restrictions:

If GPRs rs or rt do not contain sign-extended 32-bit values (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (HI31..0 || LO31..0) - ((0

32 || GPR[rs]31..0) × (032 || GPR[rt]31..0))
HI ← sign_extend(temp63..32)
LO ← sign_extend(temp31..0)

Exceptions:

None

Programming Notes:

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt
0

00000
0

00000
MSUBU
000101

6 5 5 5 5 6

Move to Coprocessor 0 IMTC0

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 237

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MTC0 rt, rd MIPS32
MTC0 rt, rd, sel MIPS32

Purpose: Move to Coprocessor 0

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[0, rd, sel] ← GPR[rt]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rd and
sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and sel.

Operation:

data ← GPR[rt]
if (Width(CPR[0,rd,sel]) = 64) then

CPR[0,rd,sel] ← data
else

CPR[0,rd,sel] ← data31..0
endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 3 2 0

COP0
010000

MT
00100

rt rd
0

0000 000
sel

6 5 5 5 8 3

Move Word to Floating Point MTC1

238 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MTC1 rt, fs MIPS32

Purpose: Move Word to Floating Point

To copy a word from a GPR to an FPU (CP1) general register

Description: FPR[fs] ← GPR[rt]

The low word in GPR rt is placed into the low word of FPR fs. If FPRs are 64 bits wide, bits 63..32 of FPR fs become
undefined.

Restrictions:

Operation:

data ← GPR[rt]31..0
StoreFPR(fs, UNINTERPRETED_WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPR fs is UNPREDICTABLE for the instruction immediately fol-
lowing MTC1.

31 26 25 21 20 16 15 11 10 0

COP1
010001

MT
00100

rt fs
0

000 0000 0000

6 5 5 5 11

Move Word to Coprocessor 2 IMTC2

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 239

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MTC2 rt, rd MIPS32
MTC2 rt, rd, sel MIPS32

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to Coprocessor 2

To copy a word from a GPR to a COP2 general register

Description: CP2CPR[Impl] ← GPR[rt]

The low word in GPR rt is placed into the low word of coprocessor 2 general register denoted by the Impl field. If
coprocessor 2 general registers are 64 bits wide, bits 63..32 of the register denoted by the Impl field become unde-
fined. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by
the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist.

Operation:

data ← GPR[rt]31..0
CP2CPR[Impl] ← data

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 8 7 0

COP2
010010

MT
00100

rt Impl

6 5 5 16

Move Word to High Half of Floating Point Register MTHC1

240 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MTHC1 rt, fs MIPS32 Release 2

Purpose: Move Word to High Half of Floating Point Register

To copy a word from a GPR to the high half of an FPU (CP1) general register

Description: FPR[fs]63..32 ← GPR[rt]31..0

The low word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-
bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if StatusFR = 0 and fs is odd.

Operation:

newdata ← GPR[rt]31..0
olddata ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)31..0

StoreFPR(fs, UNINTERPRETED_DOUBLEWORD, newdata || olddata)

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHC1.
This is because of the semantic definition of MTC1, which is not aware that software will be using an MTHC1
instruction to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 11 10 0

COP1
010001

MTH
00111

rt fs
0

000 0000 0000

6 5 5 5 11

Move Word to High Half of Coprocessor 2 Register IMTHC2

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 241

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MTHC2 rt, rd MIPS32 Release 2
MTHC2 rt, rd, sel MIPS32 Release 2

The syntax shown above is an example using MTHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word to High Half of Coprocessor 2 Register

To copy a word from a GPR to the high half of a COP2 general register

Description: CP2CPR[Impl]63..32 ← GPR[rt]31..0

The low word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if that register is
not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

data ← GPR[rt]31..0
CP2CPR[Impl] ← data || CPR[2,rd,sel]31..0

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the MTHC2.
This is because of the semantic definition of MTC2, which is not aware that software will be using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.

31 26 25 21 20 16 15 11 10 0

COP2
010010

MTH
00111

rt Impl

6 5 5 16

Move to HI Register MTHI

242 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MTHI rs MIPS32

Purpose: Move to HI Register

To copy a GPR to the special purpose HI register

Description: HI ← GPR[rs]

The contents of GPR rs are loaded into special register HI.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into either HI or LO.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

HI ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL
000000

rs
0

000 0000 0000 0000
MTHI
010001

6 5 15 6

Move to LO Register IMTLO

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 243

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MTLO rs MIPS32

Purpose: Move to LO Register

To copy a GPR to the special purpose LO register

Description: LO ← GPR[rs]

The contents of GPR rs are loaded into special register LO.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into either HI or LO.

If an MTLO instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of HI are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTLO r6
... # code not containing mfhi
MFHI r3 # this mfhi would get an UNPREDICTABLE value

Operation:

LO ← GPR[rs]

Exceptions:

None

Historical Information:

In MIPS I-III, if either of the two preceding instructions is MFHI, the result of that MFHI is UNPREDICTABLE.
Reads of the HI or LO special register must be separated from any subsequent instructions that write to them by two
or more instructions. In MIPS IV and later, including MIPS32 and MIPS64, this restriction does not exist.

31 26 25 21 20 6 5 0

SPECIAL
000000

rs
0

000 0000 0000 0000
MTLO
010011

6 5 15 6

Multiply Word to GPR MUL

244 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MUL rd, rs, rt MIPS32

Purpose: Multiply Word to GPR

To multiply two words and write the result to a GPR.

Description: GPR[rd] ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands as signed values,
to produce a 64-bit result. The least significant 32 bits of the product are sign-extended and written to GPR rd. The
contents of HI and LO are UNPREDICTABLE after the operation. No arithmetic exception occurs under any cir-
cumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Note that this instruction does not provide the capability of writing the result to the HI and LO registers.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
temp ← GPR[rs] × GPR[rt]
GPR[rd] ← sign_extend(temp31..0)
HI ← UNPREDICTABLE
LO ← UNPREDICTABLE

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read GPR rd before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL2
011100

rs rt rd
0

00000
MUL

000010

6 5 5 5 5 6

Floating Point Multiply IMUL.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 245

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MUL.fmt
MUL.S fd, fs, ft MIPS32
MUL.D fd, fs, ft MIPS32
MUL.PS fd, fs, ft MIPS64

MIPS32 Release 2

Purpose: Floating Point Multiply

To multiply FP values

Description: FPR[fd] ← FPR[fs] × FPR[ft]

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
MUL.PS multiplies the upper and lower halves of FPR fs and FPR ft independently, and ORs together any generated
exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of MUL.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) ×fmt ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd
MUL

000010

6 5 5 5 5 6

Multiply Word MULT

246 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MULT rs, rt MIPS32

Purpose: Multiply Word

To multiply 32-bit signed integers

Description: (HI, LO) ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into special register
LO, and the high-order 32-bit word is sign-extended and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
prod ← GPR[rs]31..0 × GPR[rt]31..0
LO ← sign_extend(prod31..0)
HI ← sign_extend(prod63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
MULT
011000

6 5 5 10 6

Multiply Unsigned Word IMULTU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 247

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: MULTU rs, rt MIPS32

Purpose: Multiply Unsigned Word

To multiply 32-bit unsigned integers

Description: (HI, LO) ← GPR[rs] × GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is sign-extended and placed into special regis-
ter LO, and the high-order 32-bit word is sign-extended and placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
prod ← (0 || GPR[rs]31..0) × (0 || GPR[rt]31..0)
LO ← sign_extend(prod31..0)
HI ← sign_extend(prod63..32)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt
0

00 0000 0000
MULTU
011001

6 5 5 10 6

Floating Point Negate NEG.fmt

248 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: NEG.fmt
NEG.S fd, fs MIPS32
NEG.D fd, fs MIPS32
NEG.PS fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Negate

To negate an FP value

Description: FPR[fd] ← -FPR[fs]

The value in FPR fs is negated and placed into FPR fd. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt. NEG.PS negates the upper and lower halves of FPR fs independently, and ORs
together any generated exceptional conditions.

This operation is arithmetic; a NaN operand signals invalid operation.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

The result of NEG.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

NEG
000111

6 5 5 5 5 6

Floating Point Negative Multiply Add INMADD.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 249

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: NMADD.fmt
NMADD.S fd, fr, fs, ft MIPS64, MIPS32 Release 2
NMADD.D fd, fr, fs, ft MIPS64, MIPS32 Release 2
NMADD.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Negative Multiply Add

To negate a combined multiply-then-add of FP values

Description: FPR[fd] ← − ((FPR[fs] × FPR[ft]) + FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is added to the product.

The result sum is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated
by changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt. The results and
flags are as if separate floating-point multiply and add and negate instructions were executed.

NMADD.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and
ORs together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMADD.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −(vfr +fmt (vfs ×fmt vft)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X
010011

fr ft fs fd
NMADD

110
fmt

6 5 5 5 5 3 3

Floating Point Negative Multiply Subtract NMSUB.fmt

250 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: NMSUB.fmt
NMSUB.S fd, fr, fs, ft MIPS64, MIPS32 Release 2
NMSUB.D fd, fr, fs, ft MIPS64, MIPS32 Release 2
NMSUB.PS fd, fr, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Negative Multiply Subtract

To negate a combined multiply-then-subtract of FP values

Description: FPR[fd] ← − ((FPR[fs] × FPR[ft]) − FPR[fr])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is rounded according to the current rounding mode in FCSR. The value in FPR fr is subtracted from the product.

The result is calculated to infinite precision, rounded according to the current rounding mode in FCSR, negated by
changing the sign bit, and placed into FPR fd. The operands and result are values in format fmt. The results and flags
are as if separate floating-point multiply and subtract and negate instructions were executed.

NMSUB.PS applies the operation to the upper and lower halves of FPR fr, FPR fs, and FPR ft independently, and ORs
together any generated exceptional conditions.

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fr, fs, ft, and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of NMSUB.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vfr ← ValueFPR(fr, fmt)
vfs ← ValueFPR(fs, fmt)
vft ← ValueFPR(ft, fmt)
StoreFPR(fd, fmt, −((vfs ×fmt vft) −fmt vfr))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 3 2 0

COP1X
010011

fr ft fs fd
NMSUB

111
fmt

6 5 5 5 5 3 3

No Operation INOP

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 251

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: NOP Assembly Idiom

Purpose: No Operation

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL
r0, r0, 0.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to use to fill branch and
jump delay slots and to pad out alignment sequences.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

0
00000

0
00000

0
00000

SLL
000000

6 5 5 5 5 6

Not Or NOR

252 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: NOR rd, rs, rt MIPS32

Purpose: Not Or

To do a bitwise logical NOT OR

Description: GPR[rd] ← GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
NOR

100111

6 5 5 5 5 6

Or IOR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 253

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: OR rd, rs, rt MIPS32

Purpose: Or

To do a bitwise logical OR

Description: GPR[rd] ← GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
OR

100101

6 5 5 5 5 6

Or Immediate ORI

254 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ORI rt, rs, immediate MIPS32

Purpose: Or Immediate

To do a bitwise logical OR with a constant

Description: GPR[rt] ← GPR[rs] or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

ORI
001101

rs rt immediate

6 5 5 16

Wait for the LLBit to clear IPAUSE

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 255

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: PAUSE MIPS32 Release 2/MT ASE

Purpose: Wait for the LLBit to clear

Description:

Locks implemented using the LL/SC (or LLD/SCD) instructions are a common method of synchronization between
threads of control. A typical lock implementation does a load-linked instruction and checks the value returned to
determine whether the software lock is set. If it is, the code branches back to retry the load-linked instruction, thereby
implementing an active busy-wait sequence. The PAUSE instructions is intended to be placed into the busy-wait
sequence to block the instruction stream until such time as the load-linked instruction has a chance to succeed in
obtaining the software lock.

The precise behavior of the PAUSE instruction is implementation-dependent, but it usually involves descheduling the
instruction stream until the LLBit is zero. In a single-threaded processor, this may be implemented as a short-term
WAIT operation which resumes at the next instruction when the LLBit is zero or on some other external event such as
an interrupt. On a multi-threaded processor, this may be implemented as a short term YIELD operation which
resumes at the next instruction when the LLBit is zero. In either case, it is assumed that the instruction stream which
gives up the software lock does so via a write to the lock variable, which causes the processor to clear the LLBit as
seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if a PAUSE instruction is placed in the delay slot of a branch
or a jump.

Operation:

if LLBit ≠ 0 then
EPC ← PC + 4 /* Resume at the following instruction */
DescheduleInstructionStream()

endif

Exceptions:

None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is included in the following example:

acquire_lock:

31 26 25 24 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

0
00000

0
00000

5
00101

SLL
000000

6 5 5 5 5 6

Wait for the LLBit to clear PAUSE

256 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

ll t0, 0(a0) /* Read software lock, set hardware lock */
bnez t0, acquire_lock_retry: /* Branch if software lock is taken */
addiu t0, t0, 1 /* Set the software lock */
sc t0, 0(a0) /* Try to store the software lock */
bnez t0, 10f /* Branch if lock acquired successfully */
sync

acquire_lock_retry:
pause /* Wait for LLBIT to clear before retry */
b acquire_lock /* and retry the operation */
nop

10:

Critical region code

release_lock:
sync
sw zero, 0(a0) /* Release software lock, clearing LLBIT */

/* for any PAUSEd waiters */

Pair Lower Lower IPLL.PS

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 257

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: PLL.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Pair Lower Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] ← lower(FPR[fs]) || lower(FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the lower single ofFPR
ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft, PS)31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10110

ft fs fd
PLL

101100

6 5 5 5 5 6

Pair Lower Upper PLU.PS

258 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: PLU.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Pair Lower Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] ← lower(FPR[fs]) || upper(FPR[ft])

A new paired-single value is formed by catenating the lower single of FPR fs (bits 31..0) and the upper single of FPR
ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)31..0 || ValueFPR(ft, PS)63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10110

ft fs fd
PLU

101101

6 5 5 5 5 6

Prefetch IPREF

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 259

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: PREF hint,offset(base) MIPS32

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch_memory(GPR[base] + offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., kseg1), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the K0, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

31 26 25 21 20 16 15 0

PREF
110011

base hint offset

6 5 5 16

Table 3.30 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

Prefetch PREF

260 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved Reserved for future use - not available to implementations.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache so that it is not
displaced by data prefetched as “streamed.”

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache so that it is not
displaced by data prefetched as “streamed.”

8-20 Reserved Reserved for future use - not available to implementations.

21-24 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent
use.

25 writeback_invalidate (also
known as “nudge”)

Use: Data is no longer expected to be used.
Action: For a writeback cache, schedule a writeback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back
as invalid. If the cache line is not dirty, it is implementation dependent
whether the state of the cache line is marked invalid or left unchanged. If the
cache line is locked, no action is taken.

26-29 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent
use.

Table 3.30 Values of hint Field for PREF Instruction

Prefetch IPREF

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 261

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

None

Operation:

vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.
Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty
victim is written back to memory, the entire line is filled with zero data, and
the state of the line is marked as valid and dirty.
Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used
as a fast bzero-type function.

31 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent
use.

Table 3.30 Values of hint Field for PREF Instruction

Prefetch Indexed PREFX

262 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: PREFX hint, index(base) MIPS64
MIPS32 Release 2

Purpose: Prefetch Indexed

To move data between memory and cache.

Description: prefetch_memory[GPR[base] + GPR[index]]

PREFX adds the contents of GPR index to the contents of GPR base to form an effective byte address. The hint field
supplies information about the way the data is expected to be used.

The only functional difference between the PREF and PREFX instructions is the addressing mode implemented by
the two. Refer to the PREF instruction for all other details, including the encoding of the hint field.

Restrictions:

Operation:

vAddr ← GPR[base] + GPR[index]
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Coprocessor Unusable, Reserved Instruction, Bus Error, Cache Error

Programming Notes:

The PREFX instruction is only available on processors that implement floating point and should never by generated
by compilers in situations other than those in which the corresponding load and store indexed floating point instruc-
tions are generated.

Also refer to the corresponding section in the PREF instruction description.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

base index hint
0

00000
PREFX
001111

6 5 5 5 5 6

Pair Upper Lower IPUL.PS

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 263

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: PUL.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Pair Upper Lower

To merge a pair of paired single values with realignment

Description: FPR[fd] ← upper(FPR[fs]) || lower(FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the lower single of FPR
ft (bits 31..0).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)63..32 || ValueFPR(ft, PS)31..0)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10110

ft fs fd
PUL

101110

6 5 5 5 5 6

Pair Upper Upper PUU.PS

264 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: PUU.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Pair Upper Upper

To merge a pair of paired single values with realignment

Description: FPR[fd] ← upper(FPR[fs]) || upper(FPR[ft])

A new paired-single value is formed by catenating the upper single of FPR fs (bits 63..32) and the upper single of FPR
ft (bits 63..32).

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PS, ValueFPR(fs, PS)63..32 || ValueFPR(ft, PS)63..32)

Exceptions:

Coprocessor Unusable, Reserved Instruction

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
10110

ft fs fd
PUU

101111

6 5 5 5 5 6

Read Hardware Register IRDHWR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 265

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: RDHWR rt,rd MIPS32 Release 2

Purpose: Read Hardware Register

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.

Description: GPR[rt] ← HWR[rd]

If access is allowed to the specified hardware register, the contents of the register specified by rd is sign-extended and
loaded into general register rt. Access control for each register is selected by the bits in the coprocessor 0 HWREna
register.

The available hardware registers, and the encoding of the rd field for each, are shown in Table 3.31.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
0111 11

0
00 000

rt rd
0

000 00
RDHWR
11 1011

6 5 5 5 2 3 6

Table 3.31 RDHWR Register Numbers

Register
Number

(rd Value) Mnemonic Description

0
CPUNum Number of the CPU on which the program is currently running. This register

provides read access to the coprocessor 0 EBaseCPUNum field.

1
SYNCI_Step Address step size to be used with the SYNCI instruction, or zero if no caches

need be synchronized. See that instruction’s description for the use of this
value.

2
CC High-resolution cycle counter. This register provides read access to the

coprocessor 0 Count Register.

3

CCRes Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:

4-28
These registers numbers are reserved for future architecture use. Access
results in a Reserved Instruction Exception.

29
ULR User Local Register. This register provides read access to the coprocessor 0

UserLocal register, if it is implemented. In some operating environments,
the UserLocal register is a pointer to a thread-specific storage block.

30-31
These register numbers are reserved for implementation-dependent use. If
they are not implemented, access results in a Reserved Instruction Exception.

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle

etc.

Read Hardware Register RDHWR

266 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If access is not allowed or the register is not implemented, a Reserved Instruction Exception is
signaled.

Operation:

case rd
0: temp ← sign_extend(EBaseCPUNum)

1: temp ← sign_extend(SYNCI_StepSize())
2: temp ← sign_extend(Count)
3: temp ← sign_extend(CountResolution())
29: temp ← sign_extend_if_32bit_op(UserLocal)
30: temp ← sign_extend_if_32bit_op(Implementation-Dependent-Value)
31: temp ← sign_extend_if_32bit_op(Implementation-Dependent-Value)
otherwise: SignalException(ReservedInstruction)

endcase
GPR[rt] ← temp

function sign_extend_if_32bit_op(value)
if (width(value) = 64) and Are64bitOperationsEnabled() then

sign_extend_if_32bit_op ← value
else

sign_extend_if_32bit_op ← sign_extend(value)
endif

end sign_extend_if_32bit_op

Exceptions:

Reserved Instruction

Read GPR from Previous Shadow Set IRDPGPR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 267

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: RDPGPR rd, rt MIPS32 Release 2

Purpose: Read GPR from Previous Shadow Set

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rd] ← SGPR[SRSCtlPSS, rt]

The contents of the shadow GPR register specified by SRSCtlPSS (signifying the previous shadow set number) and rt

(specifying the register number within that set) is moved to the current GPR rd.

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rd] ← SGPR[SRSCtlPSS, rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP0
0100 00

RDPGPR
01 010

rt rd
0

000 0000 0000

6 5 5 5 11

Reciprocal Approximation RECIP.fmt

268 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: RECIP.fmt
RECIP.S fd, fs MIPS64, MIPS32 Release 2
RECIP.D fd, fs MIPS64, MIPS32 Release 2

Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly)

Description: FPR[fd] ← 1.0 / FPR[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR fd. The operand and result are values in
format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

RECIP
010101

6 5 5 5 5 6

Rotate Word Right IROTR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 269

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ROTR rd, rt, sa SmartMIPS Crypto, MIPS32 Release 2

Purpose: Rotate Word Right

To execute a logical right-rotate of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] ↔(right) sa

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is sign-extended and placed in
GPR rd. The bit-rotate amount is specified by sa.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) or
((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← sa
temp ← GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

Reserved Instruction

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0000
R
1

rt rd sa
SRL

000010

6 4 1 5 5 5 6

Rotate Word Right Variable ROTRV

270 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ROTRV rd, rt, rs SmartMIPS Crypto, MIPS32 Release 2

Purpose: Rotate Word Right Variable

To execute a logical right-rotate of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] ↔(right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is sign-extended and placed in
GPR rd. The bit-rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) or
((ArchitectureRevision() < 2) and (Config3SM = 0)) then
UNPREDICTABLE

endif
s ← GPR[rs]4..0
temp ← GPR[rt]s-1..0 || GPR[rt]31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

Reserved Instruction

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL
000000

rs rt rd 0000
R
1

SRLV
000110

6 5 5 5 4 1 6

Floating Point Round to Long Fixed Point IROUND.L.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 271

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ROUND.L.fmt
ROUND.L.S fd, fs MIPS64, MIPS32 Release 2
ROUND.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding to nearest

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

ROUND.L
001000

6 5 5 5 5 6

Floating Point Round to Word Fixed Point ROUND.W.fmt

272 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: ROUND.W.fmt
ROUND.W.S fd, fs MIPS32
ROUND.W.D fd, fs MIPS32

Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding to nearest

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

ROUND.W
001100

6 5 5 5 5 6

Reciprocal Square Root Approximation IRSQRT.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 273

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: RSQRT.fmt
RSQRT.S fd, fs MIPS64, MIPS32 Release 2
RSQRT.D fd, fs MIPS64, MIPS32 Release 2

Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly)

Description: FPR[fd] ← 1.0 / sqrt(FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR fd. The operand
and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated rep-
resentation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, 1.0 / SquareRoot(valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

RSQRT
010110

6 5 5 5 5 6

Store Byte SB

274 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SB rt, offset(base) MIPS32

Purpose: Store Byte

To store a byte to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian

3)
bytesel ← vAddr2..0 xor BigEndianCPU3

datadoubleword ← GPR[rt]63–8*bytesel..0 || 0
8*bytesel

StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 0

SB
101000

base rt offset

6 5 5 16

Store Conditional Word ISC

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 275

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SC rt, offset(base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The least-significant 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned
effective address. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The least-significant 32-bit word of GPR rt is stored into memory at the location specified by the aligned effec-
tive address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LL and SC, the SC fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it is
at least one word and at most the minimum page size.

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is

31 26 25 21 20 16 15 0

SC
111000

base rt offset

6 5 5 16

Store Conditional Word SC

276 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel ← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword ← GPR[rt]63-8*bytesel..0 || 0

8*bytesel

if LLbit then
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

endif
GPR[rt] ← 063 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Store Conditional Word ISC

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 277

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Store Conditional Doubleword SCD

278 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SCD rt, offset(base) MIPS64

Purpose: Store Conditional Doubleword

To store a doubleword to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset] ← GPR[rt], GPR[rt] ← 1
else GPR[rt] ← 0

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The 64-bit doubleword in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SCD completes the RMW sequence begun by the preceding LLD instruction executed on the processor. If it
would complete the RMW sequence atomically, the following occur:

• The 64-bit doubleword of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LLD and SCD, the SCD fails:

• A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the doubleword. The size and alignment of the block is implementation dependent,
but it is at least one doubleword and at most the minimum page size.

• An ERET instruction is executed.

If either of the following events occurs between the execution of LLD and SCD, the SCD may succeed or it may fail;
success or failure is not predictable. Portable programs should not cause these events:

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLD/SCD.

• The instructions executed starting with the LLD and ending with the SCD do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following two conditions must be true or the result of the SCD is UNPREDICTABLE:

• Execution of the SCD must be preceded by execution of an LLD instruction.

• An RMW sequence executed without intervening events that would cause the SCD to fail must use the same
address in the LLD and SCD. The address is the same if the virtual address, physical address, and cache-coher-
ence algorithm are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the

31 26 25 21 20 16 15 0

SCD
111100

base rt offset

6 5 5 16

Store Conditional Doubleword ISCD

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 279

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

location:

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

• I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
datadoubleword ← GPR[rt]
if LLbit then

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

Programming Notes:

LLD and SCD are used to atomically update memory locations, as shown below.

L1:
LLD T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SCD T2, (T0) # try to store,

checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LLD and SCD cause SCD to fail, so persistent exceptions must be avoided. Some examples
of such exceptions are arithmetic operations that trap, system calls, and floating point operations that trap or require
software emulation assistance.

LLD and SCD function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Store Doubleword SD

280 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SD rt, offset(base) MIPS64

Purpose: Store Doubleword

To store a doubleword to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The 64-bit doubleword in GPR rt is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
datadoubleword ← GPR[rt]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

31 26 25 21 20 16 15 0

SD
111111

base rt offset

6 5 5 16

Software Debug Breakpoint ISDBBP

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 281

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SDBBP code EJTAG

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug excep-
tion handler, and is retrieved by the debug exception handler only by loading the contents of the memory word con-
taining the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException()

else
SignalDebugModeBreakpointException()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

31 26 25 6 5 0

SPECIAL2
011100

code
SDBBP
111111

6 20 6

Store Doubleword from Floating Point SDC1

282 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SDC1 ft, offset(base) MIPS32

Purpose: Store Doubleword from Floating Point

To store a doubleword from an FPR to memory

Description: memory[GPR[base] + offset] ← FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC1
111101

base ft offset

6 5 5 16

Store Doubleword from Coprocessor 2 ISDC2

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 283

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SDC2 rt, offset(base) MIPS32

Purpose: Store Doubleword from Coprocessor 2

To store a doubleword from a Coprocessor 2 register to memory

Description: memory[GPR[base] + offset] ← CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← CPR[2,rt,0]
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SDC2
111110

base rt offset

6 5 5 16

Store Doubleword Left SDL

284 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SDL rt, offset(base) MIPS64

Purpose: Store Doubleword Left

To store the most-significant part of a doubleword to an unaligned memory address

Description: memory[GPR[base] + offset] ← Some_Bytes_From GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 8 consecutive bytes forming a doubleword (DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the most-significant 1 to 8 bytes, is in the aligned doubleword containing EffAddr. The same number of
most-significant (left) bytes of GPR rt are stored into these bytes of DW.

The figure below illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an
unaligned doubleword starting at location 2. A part of DW, 6 bytes, is located in the aligned doubleword containing
the most-significant byte at 2. First, SDL stores the 6 most-significant bytes of the source register into these bytes in
memory. Next, the complementary SDR instruction stores the remainder of DW.

Figure 3.19 Unaligned Doubleword Store With SDL and SDR

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned doubleword—that is, the low 3 bits of the address (vAddr2..0)—and the current byte-ordering mode of the pro-
cessor (big- or little-endian). The figure below shows the bytes stored for every combination of offset and byte order-
ing.

31 26 25 21 20 16 15 0

SDL
101100

base rt offset

6 5 5 16

Doubleword at byte 2 in big-endian memory; each memory byte contains its own address

most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

A B C D E F G H GPR 24

After executing
0 1 A B C D E F 8 9 10 ... SDL $24,2($0)

Then after
0 1 A B C D E F G H 10 ... SDR $24,9($0)

Store Doubleword Left ISDL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 285

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.20 Bytes Stored by an SDL Instruction

Restrictions:

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..3 || 0
3

endif
bytesel ← vAddr2..0 xor BigEndianCPU3

datadoubleword ← 056–8*bytesel || GPR[rt]63..56–8*bytesel
StoreMemory (CCA, byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction, Watch

Initial Memory Contents and Byte Offsets Contents of
Source Registermost — significance — least

0 1 2 3 4 5 6 7 ←big-endian most — significance — least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ←little-endian offset

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

A B C D E F G H 0 i j k l m n o A

i A B C D E F G 1 i j k l m n A B

i j A B C D E F 2 i j k l m A B C

i j k A B C D E 3 i j k l A B C D

i j k l A B C D 4 i j k A B C D E

i j k l m A B C 5 i j A B C D E F

i j k l m n A B 6 i A B C D E F G

i j k l m n o A 7 A B C D E F G H

Store Doubleword Right SDR

286 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SDR rt, offset(base) MIPS64

Purpose: Store Doubleword Right

To store the least-significant part of a doubleword to an unaligned memory address

Description: memory[GPR[base] + offset] ← Some_Bytes_From GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 8 consecutive bytes forming a doubleword (DW) in memory, starting at an arbitrary
byte boundary.

A part of DW, the least-significant 1 to 8 bytes, is in the aligned doubleword containing EffAddr. The same number of
least-significant (right) bytes of GPR rt are stored into these bytes of DW.

Figure 3-25 illustrates this operation for big-endian byte ordering. The 8 consecutive bytes in 2..9 form an unaligned
doubleword starting at location 2. A part of DW, 2 bytes, is located in the aligned doubleword containing the least-sig-
nificant byte at 9. First, SDR stores the 2 least-significant bytes of the source register into these bytes in memory.
Next, the complementary SDL stores the remainder of DW.

Figure 3.21 Unaligned Doubleword Store With SDR and SDL

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned doubleword—that is, the low 3 bits of the address (vAddr2..0)—and the current byte ordering mode of the pro-
cessor (big- or little-endian). Figure 3-26 shows the bytes stored for every combination of offset and byte-ordering.

31 26 25 21 20 16 15 0

SDR
101101

base rt offset

6 5 5 16

Doubleword at byte 2 in memory, big-endian byte order, - each mem byte contains its address
most — significance — least

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Memory

A B C D E F G H GPR 24

After executing
0 1 2 3 4 5 6 7 G H 10 ... SDR $24,9($0)

Then after

0 1 A B C D E F G H 10 ... SDL $24,2($0)

Store Doubleword Right ISDR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 287

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.22 Bytes Stored by an SDR Instruction

Restrictions:

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..3 || 0
3

endif
bytesel ← vAddr1..0 xor BigEndianCPU

3

datadoubleword ← GPR[rt]63–8*bytesel || 0
8*bytesel

StoreMemory (CCA, DOUBLEWORD-byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Reserved Instruction, Watch

Initial Memory contents and byte offsets Contents of
Source Registermost — significance — least

0 1 2 3 4 5 6 7 ←big--endian most — significance — least

i j k l m n o p A B C D E F G H

7 6 5 4 3 2 1 0 ←little-endian offset

Memory contents after instruction (shaded is unchanged)

Big-endian byte ordering vAddr2..0 Little-endian byte ordering

H j k l m n o p 0 A B C D E F G H

G H k l m n o p 1 B C D E F G H p

F G H l m n o p 2 C D E F G H o p

E F G H m n o p 3 D E F G H n o p

D E F G H n o p 4 E F G H m n o p

C D E F G H o p 5 F G H l m n o p

B C D E F G H p 6 G H k l m n o p

A B C D E F G H 7 H j k l m n o p

Store Doubleword Indexed from Floating Point SDXC1

288 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SDXC1 fs, index(base) MIPS64
MIPS32 Release 2

Purpose: Store Doubleword Indexed from Floating Point

To store a doubleword from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ← FPR[fs]

The 64-bit doubleword in FPR fs is stored in memory at the location specified by the aligned effective address. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress2..0 ≠ 0 (not doubleword-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr2..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(fs, UNINTERPRETED_DOUBLEWORD)
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Coprocessor Unusable, Address Error, Reserved Instruction, Watch.

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

base index fs
0

00000
SDXC1
001001

6 5 5 5 5 6

Sign-Extend Byte ISEB

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 289

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SEB rd, rt MIPS32 Release 2

Purpose: Sign-Extend Byte

To sign-extend the least significant byte of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SignExtend(GPR[rt]7..0)

The least significant byte from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
GPR[rd] ← sign_extend(GPR[rt]7..0)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equivalent
instructions already in the instruction set. The following table shows the instructions providing the equivalent func-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
SEB

10000
BSHFL
100000

6 5 5 5 5 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

SEW rx,ry Sign-Extend Word SLL rx,ry,0

ZEW rx,rx1

1. The equivalent instruction uses rx for both source and destination, so the expected
instruction is limited to one register

Zero-Extend Word DINSP32 rx,r0,32,32

Sign-Extend Halfword SEH

290 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SEH rd, rt MIPS32 Release 2

Purpose: Sign-Extend Halfword

To sign-extend the least significant halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SignExtend(GPR[rt]15..0)

The least significant halfword from GPR rt is sign-extended and stored in GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
GPR[rd] ← sign_extend(GPR[rt]15..0)

Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, one would expect that there would be ZEB and ZEH instructions
that zero-extend the source operand. Similarly, one would expect that the SEW and ZEW instructions would exist to
sign- or zero-extend a word to a doubleword. These instructions do not exist because there are functionally-equivalent
instructions already in the instruction set. The following table shows the instructions providing the equivalent func-
tions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
SEH

11000
BSHFL
100000

6 5 5 5 5 6

Expected Instruction Function Equivalent Instruction

ZEB rx,ry Zero-Extend Byte ANDI rx,ry,0xFF

ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,0xFFFF

SEW rx,ry Sign-Extend Word SLL rx,ry,0

ZEW rx,rx1 Zero-Extend Word DINSP32 rx,r0,32,32

Sign-Extend Halfword ISEH

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 291

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1. The equivalent instruction uses rx for both source and destination, so the expected
instruction is limited to one register

Store Halfword SH

292 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SH rt, offset(base) MIPS32

Purpose: Store Halfword

To store a halfword to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian

2 || 0))
bytesel ← vAddr2..0 xor (BigEndianCPU2 || 0)
datadoubleword ← GPR[rt]63–8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SH
101001

base rt offset

6 5 5 16

Shift Word Left Logical ISLL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 293

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SLL rd, rt, sa MIPS32

Purpose: Shift Word Left Logical

To left-shift a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:

s ← sa
temp ← GPR[rt](31-s)..0 || 0

s

GPR[rd] ← sign_extend(temp)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination
register; this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

rt rd sa
SLL

000000

6 5 5 5 5 6

Shift Word Left Logical Variable SLLV

294 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SLLV rd, rt, rs MIPS32

Purpose: Shift Word Left Logical Variable

To left-shift a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the result
word is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

None

Operation:

s ← GPR[rs]4..0
temp ← GPR[rt](31-s)..0 || 0

s

GPR[rd] ← sign_extend(temp)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the input operand does not have to be a properly sign-extended word value to
produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination register;
this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SLLV

000100

6 5 5 5 5 6

Set on Less Than ISLT

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 295

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SLT rd, rs, rt MIPS32

Purpose: Set on Less Than

To record the result of a less-than comparison

Description: GPR[rd] ← (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SLT

101010

6 5 5 5 5 6

Set on Less Than Immediate SLTI

296 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SLTI rt, rs, immediate MIPS32

Purpose: Set on Less Than Immediate

To record the result of a less-than comparison with a constant

Description: GPR[rt] ← (GPR[rs] < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record the Boolean result of
the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
GPR[rt] ← 0GPRLEN-1|| 1

else
GPR[rt] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTI
001010

rs rt immediate

6 5 5 16

Set on Less Than Immediate Unsigned ISLTIU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 297

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SLTIU rt, rs, immediate MIPS32

Purpose: Set on Less Than Immediate Unsigned

To record the result of an unsigned less-than comparison with a constant

Description: GPR[rt] ← (GPR[rs] < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers and record the Boolean
result of the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
GPR[rt] ← 0GPRLEN-1 || 1

else
GPR[rt] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 0

SLTIU
001011

rs rt immediate

6 5 5 16

Set on Less Than Unsigned SLTU

298 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SLTU rd, rs, rt MIPS32

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison

Description: GPR[rd] ← (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
GPR[rd] ← 0GPRLEN-1 || 1

else
GPR[rd] ← 0GPRLEN

endif

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SLTU

101011

6 5 5 5 5 6

Floating Point Square Root ISQRT.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 299

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SQRT.fmt
SQRT.S fd, fs MIPS32
SQRT.D fd, fs MIPS32

Purpose: Floating Point Square Root

To compute the square root of an FP value

Description: FPR[fd] ← SQRT(FPR[fs])

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR fd. The operand and result are values in format fmt.

If the value in FPR fs corresponds to – 0, the result is – 0.

Restrictions:

If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and fd must specify FPRs valid for operands of type fmt; if they are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

SQRT
000100

6 5 5 5 5 6

Shift Word Right Arithmetic SRA

300 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SRA rd, rt, sa MIPS32

Purpose: Shift Word Right Arithmetic

To execute an arithmetic right-shift of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTALBE

endif
s ← sa
temp ← (GPR[rt]31)

s || GPR[rt]31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

rt rd sa
SRA

000011

6 5 5 5 5 6

Shift Word Right Arithmetic Variable ISRAV

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 301

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SRAV rd, rt, rs MIPS32

Purpose: Shift Word Right Arithmetic Variable

To execute an arithmetic right-shift of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits
of GPR rs.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
s ← GPR[rs]4..0
temp ← (GPR[rt]31)

s || GPR[rt]31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SRAV
000111

6 5 5 5 5 6

Shift Word Right Logical SRL

302 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SRL rd, rt, sa MIPS32

Purpose: Shift Word Right Logical

To execute a logical right-shift of a word by a fixed number of bits

Description: GPR[rd] ← GPR[rt] >> sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
s ← sa
temp ← 0s || GPR[rt]31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0000
R
0

rt rd sa
SRL

000010

6 4 1 5 5 5 6

Shift Word Right Logical Variable ISRLV

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 303

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SRLV rd, rt, rs MIPS32

Purpose: Shift Word Right Logical Variable

To execute a logical right-shift of a word by a variable number of bits

Description: GPR[rd] ← GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
s ← GPR[rs]4..0
temp ← 0s || GPR[rt]31..s
GPR[rd] ← sign_extend(temp)

Exceptions:

None

31 26 25 21 20 16 15 11 10 7 6 5 0

SPECIAL
000000

rs rt rd 0000
R
0

SRLV
000110

6 5 5 5 4 1 6

Superscalar No Operation SSNOP

304 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SSNOP MIPS32

Purpose: Superscalar No Operation

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL r0, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTC0 and an ERET, one
would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

Based on the normal issues rules of the processor, the MTC0 issues in cycle T. Because the SSNOP instructions must
issue alone, they may issue no earlier than cycle T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier
than cycle T+3. Note that although the instruction after an SSNOP may issue no earlier than the cycle after the
SSNOP is issued, that instruction may issue later. This is because other implementation-dependent issue rules may
apply that prevent an issue in the next cycle. Processors should not introduce any unnecessary delay in issuing
SSNOP instructions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

0
00000

0
00000

1
00001

SLL
000000

6 5 5 5 5 6

Subtract Word ISUB

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 305

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SUB rd, rs, rt MIPS32

Purpose: Subtract Word

To subtract 32-bit integers. If overflow occurs, then trap

Description: GPR[rd] ← GPR[rs] − GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is sign-extended and placed into GPR rd.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← (GPR[rs]31||GPR[rs]31..0) − (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← sign_extend(temp31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SUB

100010

6 5 5 5 5 6

Floating Point Subtract SUB.fmt

306 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SUB.fmt
SUB.S fd, fs, ft MIPS32
SUB.D fd, fs, ft MIPS32
SUB.PS fd, fs, ft MIPS64, MIPS32 Release 2

Purpose: Floating Point Subtract

To subtract FP values

Description: FPR[fd] ← FPR[fs] − FPR[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-
mat fmt. SUB.PS subtracts the upper and lower halves of FPR fs and FPR ft independently, and ORs together any gen-
erated exceptional conditions.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of SUB.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) −fmt ValueFPR(ft, fmt))

CPU Exceptions:

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt ft fs fd
SUB

000001

6 5 5 5 5 6

Subtract Unsigned Word ISUBU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 307

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SUBU rd, rs, rt MIPS32

Purpose: Subtract Unsigned Word

To subtract 32-bit integers

Description: GPR[rd] ← GPR[rs] − GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp ← GPR[rs] − GPR[rt]
GPR[rd] ← sign_extend(temp)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
SUBU
100011

6 5 5 5 5 6

Store Doubleword Indexed Unaligned from Floating Point SUXC1

308 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SUXC1 fs, index(base) MIPS64, MIPS32 Release 2

Purpose: Store Doubleword Indexed Unaligned from Floating Point

To store a doubleword from an FPR to memory (GPR+GPR addressing) ignoring alignment

Description: memory[(GPR[base] + GPR[index])PSIZE-1..3] ← FPR[fs]

The contents of the 64-bit doubleword in FPR fs is stored at the memory location specified by the effective address.
The contents of GPR index and GPR base are added to form the effective address. The effective address is double-
word-aligned; EffectiveAddress2..0 are ignored.

Restrictions:

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

vAddr ← (GPR[base]+GPR[index])63..3 || 0
3

(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_DOUBLEWORD)
StoreMemory(CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

base index fs
0

00000
SUXC1
001101

6 5 5 5 5 6

Store Word ISW

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 309

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SW rt, offset(base) MIPS32

Purpose: Store Word

To store a word to memory

Description: memory[GPR[base] + offset] ← GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel ← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword ← GPR[rt]63-8*bytesel..0 || 0

8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SW
101011

base rt offset

6 5 5 16

Store Word from Floating Point SWC1

310 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

SWC1 ft, offset(base) MIPS32

Purpose: Store Word from Floating Point

To store a word from an FPR to memory

Description: memory[GPR[base] + offset] ← FPR[ft]

The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel ← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword ← ValueFPR(ft, UNINTERPRETED_WORD) || 08*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC1
111001

base ft offset

6 5 5 16

Store Word from Coprocessor 2 ISWC2

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 311

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SWC2 rt, offset(base) MIPS32

Purpose: Store Word from Coprocessor 2

To store a word from a COP2 register to memory

Description: memory[GPR[base] + offset] ← CPR[2,rt,0]

The low 32-bit word from COP2 (Coprocessor 2) register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 02))
bytesel ← vAddr2..0 xor (BigEndianCPU || 02)
datadoubleword ← CPR[2,rt,0]63-8*bytesel..0 || 0

8*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

31 26 25 21 20 16 15 0

SWC2
111010

base rt offset

6 5 5 16

Store Word Left SWL

312 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SWL rt, offset(base) MIPS32

Purpose: Store Word Left

To store the most-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ← GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same number of the
most-significant (left) bytes from the word in GPR rt are stored into these bytes of W.

If GPR rt is a 64-bit register, the source word is the low word of the register.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is located in the aligned
word containing the most-significant byte at 2. First, SWL stores the most-significant 2 bytes of the low word from
the source register into these 2 bytes in memory. Next, the complementary SWR stores the remainder of the unaligned
word.

Figure 3.23 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

31 26 25 21 20 16 15 0

SWL
101010

base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address
most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 A B C D E F G H

0 1 E F 4 5 6 ... After executing SWL $24,2($0)

0 1 E F G H 6 ... Then after SWR $24,5($0)

Store Word Left ISWL

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 313

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.24 Bytes Stored by an SWL Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
datadoubleword ← 032 || 024-8*byte || GPR[rt]31..24-8*byte

else
datadoubleword ← 024-8*byte || GPR[rt]31..24-8*byte || 0

32

endif

StoreMemory(CCA, byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error , Watch

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0

Little-endian
byte ordering

E F G H 0 i j k E

i E F G 1 i j E F

i j E F 2 i E F G

i j k E 3 E F G H

Store Word Right SWR

314 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SWR rt, offset(base) MIPS32

Purpose: Store Word Right

To store the least-significant part of a word to an unaligned memory address

Description: memory[GPR[base] + offset] ← GPR[rt]

The 16-bit signed offset is added to the contents of GPR base to form an effective address (EffAddr). EffAddr is the
address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary byte
boundary.

A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same number of the
least-significant (right) bytes from the word in GPR rt are stored into these bytes of W.

If GPR rt is a 64-bit register, the source word is the low word of the register.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is contained in the
aligned word containing the least-significant byte at 5. First, SWR stores the least-significant 2 bytes of the low word
from the source register into these 2 bytes in memory. Next, the complementary SWL stores the remainder of the
unaligned word.

Figure 3.25 Unaligned Word Store Using SWR and SWL

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering mode of the processor
(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

31 26 25 21 20 16 15 0

SWR
101110

base rt offset

6 5 5 16

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 A B C D E F G H

0 1 2 3 G H 6 ... After executing SWR $24,5($0)

0 1 E F G H 6 ... Then after SWL $24,2($0)

Store Word Right ISWR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 315

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure 3.26 Bytes Stored by SWR Instruction

Restrictions:

None

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 0
2

endif
byte ← vAddr1..0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
datadoubleword ← 032 || GPR[rt]31-8*byte..0 || 08*byte

else
datadoubleword ← GPR[rt]31-8*byte..0 || 0

8*byte || 032

endif

StoreMemory(CCA, WORD-byte, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ←big-endian 64-bit register

i j k l offset (vAddr1..0) A B C D E F G H

3 2 1 0 ←little-endian most — significance — least

most least 32-bit register E F G H

— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0

Little-endian
byte ordering

H j k l 0 E F G H

G H k l 1 F G H l

F G H l 2 G H k l

E F G H 3 H j k l

Store Word Indexed from Floating Point SWXC1

316 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SWXC1 fs, index(base) MIPS64
MIPS32 Release 2

Purpose: Store Word Indexed from Floating Point

To store a word from an FPR to memory (GPR+GPR addressing)

Description: memory[GPR[base] + GPR[index]] ← FPR[fs]

The low 32-bit word from FPR fs is stored in memory at the location specified by the aligned effective address. The
contents of GPR index and GPR base are added to form the effective address.

Restrictions:

An Address Error exception occurs if EffectiveAddress1..0 ≠ 0 (not word-aligned).

Operation:

vAddr ← GPR[base] + GPR[index]
if vAddr1..0 ≠ 03 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..3 || (pAddr2..0 xor (ReverseEndian || 0

2))
bytesel ← vAddr2..0 xor (BigEndianCPU || 0

2)
datadoubleword ← ValueFPR(fs, UNINTERPRETED_WORD) || 08*bytesel

StoreMemory(CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

31 26 25 21 20 16 15 11 10 6 5 0

COP1X
010011

base index fs
0

00000
SWXC1
001000

6 5 5 5 5 6

ISYNC

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 317

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SYNC (stype = 0 implied) MIPS32
SYNC stype MIPS32

Purpose: To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SYNC instruction:

• Completion Barriers

• Ordering Barriers

Simple Description for Completion Barrier:

• The barrier affects only uncached and cached coherent loads and stores.

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Detailed Description for Completion Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable specified
memory instructions that occur after the SYNC are allowed to be performed, with respect to any other pro-
cessor or coherent I/O module.

• The barrier does not guarantee the order in which instruction fetches are performed.

• A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementation
with a lighter-weight barrier to work on another implementation which only implements the stype zero com-
pletion barrier.

• A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, a completion barrier is required on some implementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0

stype
SYNC
001111

6 15 5 6

SYNC

318 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

SYNC behavior when the stype field is zero:

• A completion barrier that affects preceding loads and stores and subsequent loads and stores.

Simple Description for Ordering Barrier:

• The barrier affects only uncached and cached coherent loads and stores.

• The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

• Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Detailed Description for Ordering Barrier:

• Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

• If any memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

• The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

ISYNC

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 319

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table 3.32 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype
field..

Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of a load on processor A has been determined with respect to processor or coherent I/O module B when a subsequent

Table 3.32 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Code Name

Older instructions
which must reach

the load/store
ordering point

before the SYNC
instruction
completes.

Younger
instructions

which must reach
the load/store
ordering point
only after the

SYNC instruction
completes.

Older instructions
which must be

globally
performed when

the SYNC
instruction
completes Compliance

0x0 SYNC
or

SYNC 0

Loads, Stores Loads, Stores Loads, Stores Required

0x4 SYNC_WMB
or

SYNC 4

Stores Stores Optional

0x10 SYNC_MB
or

SYNC 16

Loads, Stores Loads, Stores Optional

0x11 SYNC_ACQUIRE
or

SYNC 17

Loads Loads, Stores Optional

0x12 SYNC_RELEASE
or

SYNC 18

Loads, Stores Stores Optional

0x13 SYNC_RMB
or

SYNC 19

Loads Loads Optional

0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor

Specific Sync Types

0x14 - 0x1F RESERVED Reserved for MIPS
Technologies for

future extension of
the architecture.

SYNC

320 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent I/O module: A coherent I/O module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation(stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of any
load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing pro-
cessor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably

ISYNC

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 321

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is UNPREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not
defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B
SW R1, DATA # change shared DATA value
LI R2, 1
SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)
LI R2, 1

1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared data is valid.

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the hard-
ware does not perform the barrier behavior expected by the software, the system may fail.

Synchronize Caches to Make Instruction Writes Effective SYNCI

322 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SYNCI offset(base) MIPS32 Release 2

Purpose: Synchronize Caches to Make Instruction Writes Effective

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as described
below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an implementa-
tion of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a byproduct of this instruc-
tion. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of TLBS.

A Cache Error exception may occur as a byproduct of this instruction. For example, if a writeback operation detects a
cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. Similarly,
a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.In multiprocessor implementations where instruction caches are not coher-
ently maintained by hardware, the SYNCI instruction may optionally affect all coherent icaches within the system. If
the effective address uses a coherent Cacheability and Coherency Attribute (CCA), then the operation may be global-
ized, meaning it is broadcast to all of the coherent instruction caches within the system. If the effective address does
not use one of the coherent CCAs, there is no broadcast of the SYNCI operation. If multiple levels of caches are to be
affected by one SYNCI instruction, all of the affected cache levels must be processed in the same manner - either all
affected cache levels use the globalized behavior or all affected cache levels use the non-globalized behavior.

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.

Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchronize the
caches.

The SYNCI instruction acts on the current processor at a minimum. It is implementation specific whether it affects
the caches on other processors in a multi-processor system, except as required to perform the operation on the current

31 26 25 21 20 16 15 0

REGIMM
000001

base
SYNCI
11111

offset

6 5 5 16

Synchronize Caches to Make Instruction Writes Effective ISYNCI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 323

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

processor (as might be the case if multiple processors share an L2 or L3 cache).

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
sequence is not followed.

Operation:

vaddr ← GPR[base] + sign_extend(offset)
SynchronizeCacheLines(vaddr) /* Operate on all caches */

Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception
TLB Invalid Exception
Address Error Exception
Cache Error Exception
Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after the
new instruction stream is written to make those changes effective. Note that the SYNCI instruction could be replaced
with the corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the
JR.HB instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruc-
tion is required between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*
 * This routine makes changes to the instruction stream effective to the
 * hardware. It should be called after the instruction stream is written.
 * On return, the new instructions are effective.
 *
 * Inputs:
 * a0 = Start address of new instruction stream
 * a1 = Size, in bytes, of new instruction stream
 */

addu a1, a0, a1 /* Calculate end address + 1 */
/* (daddu for 64-bit addressing) */

rdhwr v0, HW_SYNCI_Step /* Get step size for SYNCI from new */
/* Release 2 instruction */

beq v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */

10: synci 0(a0) /* Synchronize all caches around address */
sltu v1, a0, a1 /* Compare current with end address */
bne v1, zero, 10b /* Branch if more to do */
addu a0, a0, v0 /* Add step size in delay slot */

/* (daddu for 64-bit addressing) */
sync /* Clear memory hazards */

20: jr.hb ra /* Return, clearing instruction hazards */
nop

System Call SYSCALL

324 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: SYSCALL MIPS32

Purpose: System Call

To cause a System Call exception

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading
the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException(SystemCall)

Exceptions:

System Call

31 26 25 6 5 0

SPECIAL
000000

code
SYSCALL

001100

6 20 6

Trap if Equal ITEQ

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 325

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TEQ rs, rt MIPS32

Purpose: Trap if Equal

To compare GPRs and do a conditional trap

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TEQ

110100

6 5 5 10 6

Trap if Equal Immediate TEQI

326 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TEQI rs, immediate MIPS32

Purpose: Trap if Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] = immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is equal to immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] = sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM
000001

rs
TEQI
01100

immediate

6 5 5 16

Trap if Greater or Equal ITGE

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 327

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TGE rs, rt MIPS32

Purpose: Trap if Greater or Equal

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≥ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≥ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TGE

110000

6 5 5 10 6

Trap if Greater or Equal Immediate TGEI

328 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TGEI rs, immediate MIPS32

Purpose: Trap if Greater or Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is greater than or equal
to immediate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≥ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM
000001

rs
TGEI
01000

immediate

6 5 5 16

Trap if Greater or Equal Immediate Unsigned ITGEIU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 329

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TGEIU rs, immediate MIPS32

Purpose: Trap if Greater or Equal Immediate Unsigned

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rs is greater
than or equal to immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM
000001

rs
TGEIU
01001

immediate

6 5 5 16

Trap if Greater or Equal Unsigned TGEU

330 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TGEU rs, rt MIPS32

Purpose: Trap if Greater or Equal Unsigned

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≥ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is greater than or equal to GPR rt, then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TGEU
110001

6 5 5 10 6

Probe TLB for Matching Entry ITLBP

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 331

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLBP MIPS32

Purpose: Probe TLB for Matching Entry

To find a matching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set. In Release 1 of the Architecture, it is
implementation dependent whether multiple TLB matches are detected on a TLBP. However, implementations are
strongly encouraged to report multiple TLB matches only on a TLB write. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i]VPN2 and not (TLB[i]Mask)) =

(EntryHiVPN2 and not (TLB[i]Mask))) and
(TLB[i]R = EntryHiR) and
((TLB[i]G = 1) or (TLB[i]ASID = EntryHiASID)) then
Index ← i

endif
endfor

Exceptions:

Coprocessor Unusable

Machine Check

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBP
001000

6 1 19 6

Read Indexed TLB Entry TLBR

332 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLBR MIPS32

Purpose: Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register. In Release 1 of the Architecture, it is implementation dependent whether multiple TLB
matches are detected on a TLBR. However, implementations are strongly encouraged to report multiple TLB matches
only on a TLB write. In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.
Note that the value written to the EntryHi, EntryLo0, and EntryLo1 registers may be different from that originally
written to the TLB via these registers in that:

• The value returned in the VPN2 field of the EntryHi register may havethose bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

• The value returned in the PFN field of the EntryLo0 and EntryLo1 registers may havethose bits set to zero cor-
responding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
after a TLB entry is written and then read.

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i]Mask
EntryHi ← TLB[i]R || 0

Fill ||
(TLB[i]VPN2 and not TLB[i]Mask) || # Masking implementation dependent
05 || TLB[i]ASID

EntryLo1 ← 0Fill ||
(TLB[i]PFN1 and not TLB[i]Mask) || # Masking mplementation dependent
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 0Fill ||
(TLB[i]PFN0 and not TLB[i]Mask) || # Masking mplementation dependent

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBR
000001

6 1 19 6

Read Indexed TLB Entry ITLBR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 333

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

Exceptions:

Coprocessor Unusable

Machine Check

Write Indexed TLB Entry TLBWI

334 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry

To write a TLB entry indexed by the Index register.

Description:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLo0, EntryLo1, and
PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWI. In
such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Index
TLB[i]Mask ← PageMaskMask
TLB[i]R ← EntryHiR
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWI
000010

6 1 19 6

Write Indexed TLB Entry ITLBWI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 335

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable

Machine Check

Write Random TLB Entry TLBWR

336 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLBWR MIPS32

Purpose: Write Random TLB Entry

To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLo0, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled. In Release 2 of the Architecture, multiple TLB matches
may only be reported on a TLB write. The information written to the TLB entry may be different from that in the
EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

i ← Random
TLB[i]Mask ← PageMaskMask
TLB[i]R ← EntryHiR
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:

Coprocessor Unusable

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWR
000110

6 1 19 6

Write Random TLB Entry ITLBWR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 337

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Machine Check

Trap if Less Than TLT

338 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLT rs, rt MIPS32

Purpose: Trap if Less Than

To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is less than GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TLT

110010

6 5 5 10 6

Trap if Less Than Immediate ITLTI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 339

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLTI rs, immediate MIPS32

Purpose: Trap if Less Than Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is less than immediate,
then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM
000001

rs
TLTI
01010

immediate

6 5 5 16

Trap if Less Than Immediate Unsigned TLTIU

340 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLTIU rs, immediate MIPS32

Purpose: Trap if Less Than Immediate Unsigned

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] < immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if GPR rs is less than
immediate, then take a Trap exception.

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM
000001

rs
TLTIU
01011

immediate

6 5 5 16

Trap if Less Than Unsigned ITLTU

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 341

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TLTU rs, rt MIPS32

Purpose: Trap if Less Than Unsigned

To compare GPRs and do a conditional trap

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if (0 || GPR[rs]) < (0 || GPR[rt]) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TLTU

110011

6 5 5 10 6

Trap if Not Equal TNE

342 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TNE rs, rt MIPS32

Purpose: Trap if Not Equal

To compare GPRs and do a conditional trap

Description: if GPR[rs] ≠ GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is not equal to GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] ≠ GPR[rt] then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 6 5 0

SPECIAL
000000

rs rt code
TNE

110110

6 5 5 10 6

Trap if Not Equal Immediate ITNEI

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 343

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TNEI rs, immediate MIPS32

Purpose: Trap if Not Equal Immediate

To compare a GPR to a constant and do a conditional trap

Description: if GPR[rs] ≠ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is not equal to immedi-
ate, then take a Trap exception.

Restrictions:

None

Operation:

if GPR[rs] ≠ sign_extend(immediate) then
SignalException(Trap)

endif

Exceptions:

Trap

31 26 25 21 20 16 15 0

REGIMM
000001

rs
TNEI
01110

immediate

6 5 5 16

Floating Point Truncate to Long Fixed Point TRUNC.L.fmt

344 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TRUNC.L.fmt
TRUNC.L.S fd, fs MIPS64, MIPS32 Release 2
TRUNC.L.D fd, fs MIPS64, MIPS32 Release 2

Purpose: Floating Point Truncate to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding toward zero

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -263 to 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 263-1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for long fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, Inexact

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

TRUNC.L
001001

6 5 5 5 5 6

Floating Point Truncate to Word Fixed Point ITRUNC.W.fmt

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 345

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: TRUNC.W.fmt
TRUNC.W.S fd, fs MIPS32
TRUNC.W.D fd, fs MIPS32

Purpose: Floating Point Truncate to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding toward zero

Description: FPR[fd] ← convert_and_round(FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). The result is placed in FPR fd.

When the source value is Infinity, NaN, or rounds to an integer outside the range -231 to 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation

exception is taken immediately. Otherwise, the default result, 231–1, is written to fd.

Restrictions:

The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point; if they are not valid, the result
is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Overflow, Unimplemented Operation

31 26 25 21 20 16 15 11 10 6 5 0

COP1
010001

fmt
0

00000
fs fd

TRUNC.W
001101

6 5 5 5 5 6

Enter Standby Mode WAIT

346 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: WAIT MIPS32

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, usually involving a lower power mode.
Software may use bits 24:6 of the instruction to communicate additional information to the processor, and the proces-
sor may use this information as control for the lower power mode. A value of zero for bits 24:6 is the default and must
be valid in all implementations.

The WAIT instruction is typically implemented by stalling the pipeline at the completion of the instruction and enter-
ing a lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request
occurs, and execution continues with the instruction following the WAIT instruction. It is implementation-dependent
whether the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause
of the restart.The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be
taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a
jump.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter implementation dependent lower power mode
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

Implementation-Dependent Code
WAIT

100000

6 1 19 6

Write to GPR in Previous Shadow Set IWRPGPR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 347

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: WRPGPR rd, rt MIPS32 Release 2

Purpose: Write to GPR in Previous Shadow Set

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlPSS, rd] ← GPR[rt]

The contents of the current GPR rt is moved to the shadow GPR register specified by SRSCtlPSS (signifying the pre-
vious shadow set number) and rd (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

SGPR[SRSCtlPSS, rd] ← GPR[rt]

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 0

COP0
0100 00

WRPGPR
01 110

rt rd
0

000 0000 0000

6 5 5 5 11

Word Swap Bytes Within Halfwords WSBH

348 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: WSBH rd, rt MIPS32 Release 2

Purpose: Word Swap Bytes Within Halfwords

To swap the bytes within each halfword of GPR rt and store the value into GPR rd.

Description: GPR[rd] ← SwapBytesWithinHalfwords(GPR[rt])

Within each halfword of the lower word of GPR rt the bytes are swapped, the result is sign-extended, and stored in
GPR rd.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
GPR[rd] ← sign_extend(GPR[rt]23..16 || GPR[rt]31..24 || GPR[rt]7..0 || GPR[rt]15..8)

Exceptions:

Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of a word value can be converted using the following sequence:

lw t0, 0(a1) /* Read word value */
wsbh t0, t0 /* Convert endiannes of the halfwords */
rotr t0, t0, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

lw t0, 0(a1) /* Read two contiguous halfwords */
wsbh t0, t0 /* Convert endiannes of the halfwords */
seh t1, t0 /* t1 = lower halfword sign-extended to word */
sra t0, t0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
WSBH
00010

BSHFL
100000

6 5 5 5 5 6

Exclusive OR IXOR

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 349

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: XOR rd, rs, rt MIPS32

Purpose: Exclusive OR

To do a bitwise logical Exclusive OR

Description: GPR[rd] ← GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into
GPR rd.

Restrictions:

None

Operation:

GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
XOR

100110

6 5 5 5 5 6

Exclusive OR Immediate XORI

350 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Format: XORI rt, rs, immediate MIPS32

Purpose: Exclusive OR Immediate

To do a bitwise logical Exclusive OR with a constant

Description: GPR[rt] ← GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:

None

31 26 25 21 20 16 15 0

XORI
001110

rs rt immediate

6 5 5 16

Appendix A

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 351

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Instruction Bit Encodings

A.1 Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book in italics.

When encoding an instruction, the primary opcode field is encoded first. Most opcode values completely specify an
instruction that has an immediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by values in other fields. For instance, opcode REGIMM specifies the immediate instruction class,
which includes conditional branch and trap immediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the MIPS64® ISA.

Figure A.1 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the
opcode field are listed in the leftmost columns of the table. Bits 28..26 of the opcode field are listed along the topmost
rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the last
three bits designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For
instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

 Instruction Bit Encodings

352 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Figure A.1 Sample Bit Encoding Table

Tables A.2 through A.23 describe the encoding used for the MIPS64 ISA. Table A.1 describes the meaning of the
symbols used in the tables.

Table A.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values
for another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level or a new revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

⊥ Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing with 64-bit operations enabled, execution proceeds normally. In other cases, executing
such an instruction must cause a Reserved Instruction Exception (non-coprocessor encodings or
coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is not
allowed).

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 EX1

4 100

5 101

6 110 EX2

7 111

Decimal encoding of
opcode (28..26)

Binary encoding of
opcode (28..26)

Decimal encoding of
opcode (31..29)

Binary encoding of
opcode (31..29)

A.2 Instruction Bit Encoding Tables

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 353

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

∇ Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception
(SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to which access is
allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a copro-
cessor to which access is not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementa-
tion of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is
implemented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

⊕ Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A.2 MIPS64 Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 SPECIAL δ REGIMM δ J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 δ COP1 δ COP2 θδ COP1X δ BEQL φ BNEL φ BLEZL φ BGTZL φ

3 011 DADDI ⊥ DADDIU ⊥ LDL ⊥ LDR ⊥ SPECIAL2 δ JALX ε MDMX εδ SPECIAL31 δ⊕

1. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved Instruction Exception for this opcode.

4 100 LB LH LWL LW LBU LHU LWR LWU ⊥

5 101 SB SH SWL SW SDL ⊥ SDR ⊥ SWR CACHE

6 110 LL LWC1 LWC2 θ PREF LLD ⊥ LDC1 LDC2 θ LD ⊥

7 111 SC SWC1 SWC2 θ ∗ SCD ⊥ SDC1 SDC2 θ SD ⊥

Table A.1 Symbols Used in the Instruction Encoding Tables (Continued)

Symbol Meaning

 Instruction Bit Encodings

354 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table A.3 MIPS64 SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 SLL1

1. Specific encodings of the rt, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, EHB and
PAUSE functions.

MOVCI δ SRL δ SRA SLLV ∗ SRLV δ SRAV

1 001 JR2

2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

JALR2 MOVZ MOVN SYSCALL BREAK ∗ SYNC

2 010 MFHI MTHI MFLO MTLO DSLLV ⊥ ∗ DSRLV δ⊥ DSRAV ⊥

3 011 MULT MULTU DIV DIVU DMULT ⊥ DMULTU ⊥ DDIV ⊥ DDIVU ⊥

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 ∗ ∗ SLT SLTU DADD ⊥ DADDU ⊥ DSUB ⊥ DSUBU ⊥

6 110 TGE TGEU TLT TLTU TEQ ∗ TNE ∗

7 111 DSLL ⊥ ∗ DSRL δ⊥ DSRA ⊥ DSLL32 ⊥ ∗ DSRL32 δ⊥ DSRA32 ⊥

Table A.4 MIPS64 REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00 BLTZ BGEZ BLTZL φ BGEZL φ ∗ ∗ ∗ ∗

1 01 TGEI TGEIU TLTI TLTIU TEQI ∗ TNEI ∗

2 10 BLTZAL BGEZAL BLTZALL φ BGEZALL φ ∗ ∗ ∗ ∗

3 11 ∗ ∗ ∗ ∗ ∗ * ∗ SYNCI ⊕

Table A.5 MIPS64 SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL θ MSUB MSUBU θ θ

1 001 θ θ θ θ θ θ θ θ

2 010 θ θ θ θ θ θ θ θ

3 011 θ θ θ θ θ θ θ θ

4 100 CLZ CLO θ θ DCLZ ⊥ DCLO ⊥ θ θ

5 101 θ θ θ θ θ θ θ θ

6 110 θ θ θ θ θ θ θ θ

7 111 θ θ θ θ θ θ θ SDBBP σ

A.2 Instruction Bit Encoding Tables

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 355

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table A.6 MIPS64 SPECIAL31 Encoding of Function Field for Release 2 of the Architecture

1. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved Instruction Exception for this opcode and all function field values shown above.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 EXT ⊕ DEXTM ⊥⊕ DEXTU ⊥⊕ DEXT ⊥⊕ INS ⊕ DINSM ⊥⊕ DINSU ⊥⊕ DINS ⊥⊕
1 001 ∗ ∗ ∗ * ∗ ∗ ∗ ∗
2 010 ∗ ∗ * ∗ ∗ * ∗ ∗
3 011 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
4 100 BSHFL ⊕δ ∗ ∗ ∗ DBSHFL

⊥⊕δ
∗ ∗ ∗

5 101 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
6 110 ∗ ∗ ∗ ∗ ∗ ∗ * ∗
7 111 ∗ ∗ ∗ RDHWR ⊕ ∗ ∗ ∗ ∗

Table A.7 MIPS64 MOVCI Encoding of tf Bit

tf bit 16

0 1

MOVF MOVT

Table A.8 MIPS641 SRL Encoding of Shift/Rotate

1. Release 2 of the Architecture
added the ROTR instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as an
SRL

R bit 21

0 1

SRL ROTR

Table A.9 MIPS641 SRLV Encoding of Shift/Rotate

1. Release 2 of the Architecture
added the ROTRV instruction.
Implementations of Release 1 of
the Architecture ignored bit 6
and treated the instruction as an
SRLV

R bit 6

0 1

SRLV ROTRV

 Instruction Bit Encodings

356 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table A.10 MIPS641 DSRLV Encoding of Shift/Rotate

1. Release 2 of the Architecture
added the DROTRV instruction.
Implementations of Release 1 of
the Architecture ignored bit 6
and treated the instruction as a
DSRLV

R bit 6

0 1

DSRLV DROTRV

Table A.11 MIPS641 DSRL Encoding of Shift/Rotate

1. Release 2 of the Architecture
added the DROTR instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as a
DSRL

R bit 21

0 1

DSRL DROTR

Table A.12 MIPS641 DSRL32 Encoding of Shift/Rotate

1. Release 2 of the Architecture
added the DROTR32 instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as a
DSRL32

R bit 21

0 1

DSRL32 DROTR32

Table A.13 MIPS64 BSHFL and DBSHFL Encoding of sa Field1

sa bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00

WSBH
(BSHFL)
DSBH

(DBSHFL)
DSHD

(DBSHFL)

1 01

2 10 SEB (BSHFL)

3 11 SEH (BSHFL)

A.2 Instruction Bit Encoding Tables

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 357

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1. The sa field is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved Instruction exception.

Table A.14 MIPS64 COP0 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 DMFC0 ⊥ ∗ ∗ MTC0 DMTC0 ⊥ ∗ ∗

1 01 ∗ ∗ RDPGPR ⊕ MFMC01 δ⊕

1. Release 2 of the Architecture added the MFMC0 function, which is further decoded as the DI (bit 5 = 0) and EI (bit
5 = 1) instructions.

∗ ∗ WRPGPR ⊕ ∗

2 10

C0 δ3 11

Table A.15 MIPS64 COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ∗ TLBR TLBWI ∗ ∗ ∗ TLBWR ∗

1 001 TLBP ∗ * ∗ ∗ ∗ ∗ ∗

2 010 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 011 ERET ∗ ∗ ∗ ∗ ∗ ∗ DERET σ

4 100 WAIT ∗ ∗ ∗ ∗ ∗ ∗ ∗

5 101 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table A.16 MIPS64 COP1 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC1 DMFC1 ⊥ CFC1 MFHC1 ⊕ MTC1 DMTC1 ⊥ CTC1 MTHC1 ⊕
1 01 BC1 δ BC1ANY2

δε∇
BC1ANY4

δε∇
∗ ∗ ∗ ∗ ∗

2 10 S δ D δ ∗ ∗ W δ L δ PS δ ∗
3 11 ∗ ∗ * ∗ * ∗ * ∗

 Instruction Bit Encodings

358 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table A.17 MIPS64 COP1 Encoding of Function Field When rs=S

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 ∗ MOVCF δ MOVZ MOVN ∗ RECIP ∇ RSQRT ∇ ∗

3 011 ∗ ∗ ∗ ∗ RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇

4 100 ∗ CVT.D ∗ ∗ CVT.W CVT.L ∇ CVT.PS ∇ ∗

5 101 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

6 110
C.F

CABS.F ε∇
C.UN

CABS.UN ε∇
C.EQ

CABS.EQ ε∇
C.UEQ

CABS.UEQ ε∇
C.OLT

CABS.OLT ε∇
C.ULT

CABS.ULT ε∇
C.OLE

CABS.OLE ε∇
C.ULE

CABS.ULE ε∇

7 111
C.SF

CABS.SF ε∇
C.NGLE

CABS.NGLE ε∇
C.SEQ

CABS.SEQ ε∇
C.NGL

CABS.NGL ε∇
C.LT

CABS.LT ε∇
C.NGE

CABS.NGE ε∇
C.LE

CABS.LE ε∇
C.NGT

CABS.NGT ε∇

Table A.18 MIPS64 COP1 Encoding of Function Field When rs=D

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD SUB MUL DIV SQRT ABS MOV NEG

1 001 ROUND.L ∇ TRUNC.L ∇ CEIL.L ∇ FLOOR.L ∇ ROUND.W TRUNC.W CEIL.W FLOOR.W

2 010 ∗ MOVCF δ MOVZ MOVN ∗ RECIP ∇ RSQRT ∇ ∗

3 011 ∗ * ∗ ∗ RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇

4 100 CVT.S ∗ ∗ ∗ CVT.W CVT.L ∇ ∗ ∗

5 101 ∗ ∗ ∗ ∗ ∗ * ∗ ∗

6 110
C.F

CABS.F ε∇
C.UN

CABS.UN ε∇
C.EQ

CABS.EQ ε∇
C.UEQ

CABS.UEQ ε∇
C.OLT

CABS.OLT ε∇
C.ULT

CABS.ULT ε∇
C.OLE

CABS.OLE ε∇
C.ULE

CABS.ULE ε∇

7 111
C.SF

CABS.SF ε∇
C.NGLE

CABS.NGLE ε∇
C.SEQ

CABS.SEQ ε∇
C.NGL

CABS.NGL ε∇
C.LT

CABS.LT ε∇
C.NGE

CABS.NGE ε∇
C.LE

CABS.LE ε∇
C.NGT

CABS.NGT ε∇

Table A.19 MIPS64 COP1 Encoding of Function Field When rs=W or L1

1. Format type L is legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 010 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 011 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

4 100 CVT.S CVT.D ∗ ∗ ∗ ∗ CVT.PS.PW ε∇ ∗

5 101 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

A.2 Instruction Bit Encoding Tables

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 359

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Table A.20 MIPS64 COP1 Encoding of Function Field When rs=PS1

1. Format type PS is legal only if 64-bit floating point operations are enabled.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ADD ∇ SUB ∇ MUL ∇ ∗ ∗ ABS ∇ MOV ∇ NEG ∇

1 001 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 010 ∗ MOVCF δ∇ MOVZ ∇ MOVN ∇ ∗ ∗ ∗ ∗

3 011 ADDR ε∇ ∗ MULR ε∇ ∗ RECIP2 ε∇ RECIP1 ε∇ RSQRT1 ε∇ RSQRT2 ε∇

4 100 CVT.S.PU ∇ ∗ ∗ ∗ CVT.PW.PS ε∇ ∗ ∗ ∗

5 101 CVT.S.PL ∇ ∗ ∗ ∗ PLL.PS ∇ PLU.PS ∇ PUL.PS ∇ PUU.PS ∇

6 110
C.F ∇

CABS.F ε∇
C.UN ∇

CABS.UN ε∇
C.EQ ∇

CABS.EQ ε∇
C.UEQ ∇

CABS.UEQ ε∇
C.OLT ∇

CABS.OLT ε∇
C.ULT ∇

CABS.ULT ε∇
C.OLE ∇

CABS.OLE ε∇
C.ULE ∇

CABS.ULE ε∇

7 111
C.SF ∇

CABS.SF ε∇
C.NGLE ∇

CABS.NGLEε∇
C.SEQ ∇

CABS.SEQ ε∇
C.NGL ∇

CABS.NGL ε∇
C.LT ∇

CABS.LT ε∇
C.NGE ∇

CABS.NGE ε∇
C.LE ∇

CABS.LE ε∇
C.NGT ∇

CABS.NGT ε∇

Table A.21 MIPS64 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF

tf bit 16

0 1

MOVF.fmt MOVT.fmt

Table A.22 MIPS64 COP2 Encoding of rs Field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC2 θ DMFC2 θ⊥ CFC2 θ MFHC2 θ⊕ MTC2 θ DMTC2 θ⊥ CTC2 θ MTHC2 θ⊕

1 01 BC2 θ ∗ ∗ ∗ ∗ ∗ ∗ ∗

2 10

C2 θδ3 11

Table A.23 MIPS64 COP1X Encoding of Function Field1

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 LWXC1 ∇ LDXC1 ∇ ∗ ∗ ∗ LUXC1 ∇ ∗ ∗

1 001 SWXC1 ∇ SDXC1 ∇ ∗ ∗ ∗ SUXC1 ∇ ∗ PREFX ∇

2 010 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 011 ∗ ∗ ∗ ∗ ∗ ∗ ALNV.PS ∇ ∗

4 100 MADD.S ∇ MADD.D ∇ ∗ ∗ ∗ ∗ MADD.PS ∇ ∗

5 101 MSUB.S ∇ MSUB.D ∇ ∗ ∗ ∗ ∗ MSUB.PS ∇ ∗

6 110 NMADD.S ∇ NMADD.D ∇ ∗ ∗ ∗ ∗ NMADD.PS ∇ ∗

7 111 NMSUB.S ∇ NMSUB.D ∇ ∗ ∗ ∗ ∗ NMSUB.PS ∇ ∗

 Instruction Bit Encodings

360 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

A.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. This information is a tabular pre-
sentation of the encodings described in tables Table A.16 and Table A.23 above.

1. COP1X instructions are legal only if 64-bit floating point operations are enabled.

Table A.24 Floating Point Unit Instruction Format Encodings

fmt field
(bits 25..21 of
COP1 opcode)

fmt3 field
(bits 2..0 of COP1X

opcode)

Mnemonic Name Bit Width Data TypeDecimal Hex Decimal Hex

0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFC1,
CTC1, etc.). Not used for format encoding.

16 10 0 0 S Single 32 Floating
Point

17 11 1 1 D Double 64 Floating
Point

18..19 12..13 2..3 2..3 Reserved for future use by the architecture.

20 14 4 4 W Word 32 Fixed Point

21 15 5 5 L Long 64 Fixed Point

22 16 6 6 PS Paired Sin-
gle

2 × 32 Floating
Point

23 17 7 7 Reserved for future use by the architecture.

24..31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

Appendix B

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 361

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

 Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

0.90 November 1, 2000 Internal review copy of reorganized and updated architecture documentation.

0.91 November 15, 2000 Internal review copy of reorganized and updated architecture documentation.

0.92 December 15, 2000 Changes in this revision:
• Correct sign in description of MSUBU.
• Update JR and JALR instructions to reflect the changes required by

MIPS16.

0.95 March 12, 2001 Update for second external review release

1.00 August 29, 2002 Update based on all review feedback:
• Add missing optional select field syntax in mtc0/mfc0 instruction descrip-

tions.
• Correct the PREF instruction description to acknowledge that the Prepare-

ForStore function does, in fact, modify architectural state.
• To provide additional flexibility for Coprocessor 2 implementations, extend

the sel field for DMFC0, DMTC0, MFC0, and MTC0 to be 8 bits.
• Update the PREF instruction to note that it may not update the state of a

locked cache line.
• Remove obviously incorrect documentation in DIV and DIVU with regard

to putting smaller numbers in register rt.
• Fix the description for MFC2 to reflect data movement from the coprocessor

2 register to the GPR, rather than the other way around.
• Correct the pseudo code for LDC1, LDC2, SDC1, and SDC2 for a MIPS32

implementation to show the required word swapping.
• Indicate that the operation of the CACHE instruction is UNPREDICTABLE

if the cache line containing the instruction is the target of an invalidate or
writeback invalidate.

• Indicate that an Index Load Tag or Index Store Tag operation of the CACHE
instruction must not cause a cache error exception.

• Make the entire right half of the MFC2, MTC2, CFC2, CTC2, DMFC2, and
DMTC2 instructions implementation dependent, thereby acknowledging
that these fields can be used in any way by a Coprocessor 2 implementation.

• Clean up the definitions of LL, SC, LLD, and SCD.
• Add a warning that software should not use non-zero values of the stype

field of the SYNC instruction.
• Update the compatibility and subsetting rules to capture the current require-

ments.

 Revision History

362 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

1.90 September 1, 2002 Merge the MIPS Architecture Release 2 changes in for the first release of a
Relesae 2 processor. Changes in this revision include:
• All new Release 2 instructions have been included: DEXT, DEXTM,

DEXTU, DI, DINS, DINSM, DINSU, DROTR, DROTR32, DROTRV,
DSBH, DSHD, EHB, EI, EXT, INS, JALR.HB, JR.HB, MFHC1, MFHC2,
MTHC1, MTHC2, RDHWR, RDPGPR, ROTR, ROTRV, SEB, SEH,
SYNCI, WRPGPR, WSBH.

• The following instruction definitions changed to reflect Release 2 of the
Architecture: DERET, DSRL, DSRL32, DSRLV, ERET, JAL, JALR, JR,
SRL, SRLV

• With support for 64-bit FPUs on 32-bit CPUs in Release 2, all floating point
instructions that were previously implemented by MIPS64 processors have
been modified to reflect support on either MIPS32 or MIPS64 processors in
Release 2.

• All pseudo-code functions have been udpated, and the
Are64bitFPOperationsEnabled function was added.

• Update the instruction encoding tables for Release 2.

2.00 June 9, 2003 Continue with updates to merge Release 2 changes into the document.
Changes in this revision include:
• Correct the target GPR (from rd to rt) in the SLTI and SLTIU instructions.

This appears to be a day-one bug.
• Correct CPR number, and missing data movement in the pseudocode for the

MTC0 instruction.
• Add note to indicate that the CACHE instruction does not take Address

Error Exceptions due to mis-aligned effective addresses.
• Update SRL, ROTR, SRLV, ROTRV, DSRL, DROTR, DSRLV, DROTRV,

DSRL32, and DROTR32 instructions to reflect a 1-bit, rather than a 4-bit
decode of shift vs. rotate function.

• Add programming note to the PrepareForStore PREF hint to indicate that it
can not be used alone to create a bzero-like operation.

• Add note to the PREF and PREFX instruction indicating that they may
cause Bus Error and Cache Error exceptions, although this is typically lim-
ited to systems with high-reliability requirements.

• Update the SYNCI instruction to indicate that it should not modify the state
of a locked cache line.

• Establish specific rules for when multiple TLB matches can be reported (on
writes only). This makes software handling easier.

Revision Date Description

MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62 363

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

2.50 July 1, 2005 Changes in this revision:
• Correct figure label in LWR instruction (it was incorrectly specified as

LWL).
• Update all files to FrameMaker 7.1.
• Include support for implementation-dependent hardware registers via

RDHWR.
• Indicate that it is implementation-dependent whether prefetch instructions

cause EJTAG data breakpoint exceptions on an address match, and suggest
that the preferred implementation is not to cause an exception.

• Correct the MIPS32 pseudocode for the LDC1, LDXC1, LUXC1, SDC1,
SDXC1, and SUXC1 instructions to reflect the Release 2 ability to have a
64-bit FPU on a 32-bit CPU. The correction simplfies the code by using the
ValueFPR and StoreFPR functions, which correctly implement the Release
2 access to the FPRs.

• Add an explicit recommendation that all cache operations that require an
index be done by converting the index to a kseg0 address before performing
the cache operation.

• Expand on restrictions on the PREF instruction in cases where the effective
address has an uncached coherency attribute.

•

2.60 Jun 25, 2008 Changes in this revision:
• Applied the new B0.01 template.
• Update RDHWR description with the UserLocal register.
• added PAUSE instruction
• Ordering SYNCs
• CMP behavior of CACHE, PREF*, SYNCI
• DCLZ, DCLO operations was inverted
• CVT.S.PL, CVT.S.PU are non-arithmetic (no exceptions)
• *MADD.fmt & *MSUB.fmt are non-fused.
• various typos fixed

2.61 July 10, 2008 • Revision History file was incorrectly copied from VolumeIII.
• Removed index conditional text from PAUSE instruction description.
• SYNC instruction - added additional format “SYNC stype”

2.62 January 2, 2009 • LWC1, LWXC1 - added statement that upper word in 64bit registers are
UNDEFINED.

• CVT.S.PL and CVT.S.PU descriptions were still incorrecting listing IEEE
exceptions.

• Typo in CFC1 Description.
• CCRes is accessed through $3 for RDHWR, not $4.

Revision Date Description

 Revision History

364 MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set, Revision 2.62

Copyright © 2001-2003,2005,2008-2009 MIPS Technologies Inc. All rights reserved.

	MIPS64® Architecture For Programmers Volume II: The MIPS64® Instruction Set
	Contents
	Figures
	Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS64® Instruction Set
	3.1 Compliance and Subsetting
	3.2 Alphabetical List of Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDI
	ADDIU
	ADDU
	ALNV.PS
	AND
	ANDI
	B
	BAL
	BC1F
	BC1FL
	BC1T
	BC1TL
	BC2F
	BC2FL
	BC2T
	BC2TL
	BEQ
	BEQL
	BGEZ
	BGEZAL
	BGEZALL
	BGEZL
	BGTZ
	BGTZL
	BLEZ
	BLEZL
	BLTZ
	BLTZAL
	BLTZALL
	BLTZL
	BNE
	BNEL
	BREAK
	C.cond.fmt
	CACHE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLO
	COP2
	CLZ
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.PS.S
	CVT.S.fmt
	CVT.S.PL
	CVT.S.PU
	CVT.W.fmt
	DADD
	DADDI
	DADDIU
	DADDU
	DCLO
	DCLZ
	DDIV
	DDIVU
	DERET
	DEXT
	DEXTM
	DEXTU
	DI
	DINS
	DINSM
	DINSU
	DIV
	DIV.fmt
	DIVU
	DMFC0
	DMFC1
	DMFC2
	DMTC0
	DMTC1
	DMTC2
	DMULT
	DMULTU
	DROTR
	DROTR32
	DROTRV
	DSBH
	DSHD
	DSLL
	DSLL32
	DSLLV
	DSRA
	DSRA32
	DSRAV
	DSRL
	DSRL32
	DSRLV
	DSUB
	DSUBU
	EHB
	EI
	ERET
	EXT
	FLOOR.L.fmt
	FLOOR.W.fmt
	INS
	J
	JAL
	JALR
	JALR.HB
	JR
	JR.HB
	LB
	LBU
	LD
	LDC1
	LDC2
	LDL
	LDR
	LDXC1
	LH
	LHU
	LL
	LLD
	LUI
	LUXC1
	LW
	LWC1
	LWC2
	LWL
	LWR
	LWU
	LWXC1
	MADD
	MADD.fmt
	MADDU
	MFC0
	MFC1
	MFC2
	MFHC1
	MFHC2
	MFHI
	MFLO
	MOV.fmt
	MOVF
	MOVF.fmt
	MOVN
	MOVN.fmt
	MOVT
	MOVT.fmt
	MOVZ
	MOVZ.fmt
	MSUB
	MSUB.fmt
	MSUBU
	MTC0
	MTC1
	MTC2
	MTHC1
	MTHC2
	MTHI
	MTLO
	MUL
	MUL.fmt
	MULT
	MULTU
	NEG.fmt
	NMADD.fmt
	NMSUB.fmt
	NOP
	NOR
	OR
	ORI
	PAUSE
	PLL.PS
	PLU.PS
	PREF
	PREFX
	PUL.PS
	PUU.PS
	RDHWR
	RDPGPR
	RECIP.fmt
	ROTR
	ROTRV
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SC
	SCD
	SD
	SDBBP
	SDC1
	SDC2
	SDL
	SDR
	SDXC1
	SEB
	SEH
	SH
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SUXC1
	SW
	SWC1
	SWC2
	SWL
	SWR
	SWXC1
	SYNC
	SYNCI
	SYSCALL
	TEQ
	TEQI
	TGE
	TGEI
	TGEIU
	TGEU
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTI
	TLTIU
	TLTU
	TNE
	TNEI
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	WRPGPR
	WSBH
	XOR
	XORI

	Instruction Bit Encodings
	A.1 Instruction Encodings and Instruction Classes
	A.2 Instruction Bit Encoding Tables
	A.3 Floating Point Unit Instruction Format Encodings

	Revision History

